52 research outputs found

    Placental function estimated by T2*-weighted magnetic resonance imaging

    Get PDF

    Complete Inactivation of Sebum-Producing Genes Parallels the Loss of Sebaceous Glands in Cetacea

    Get PDF
    Publisher's version (útgefin grein)Genomes are dynamic biological units, with processes of gene duplication and loss triggering evolutionary novelty. The mammalian skin provides a remarkable case study on the occurrence of adaptive morphological innovations. Skin sebaceous glands (SGs), for instance, emerged in the ancestor of mammals serving pivotal roles, such as lubrication, waterproofing, immunity, and thermoregulation, through the secretion of sebum, a complex mixture of various neutral lipids such as triacylglycerol, free fatty acids, wax esters, cholesterol, and squalene. Remarkably, SGs are absent in a few mammalian lineages, including the iconic Cetacea. We investigated the evolution of the key molecular components responsible for skin sebum production: Dgat2l6, Awat1, Awat2, Elovl3, Mogat3, and Fabp9. We show that all analyzed genes have been rendered nonfunctional in Cetacea species (toothed and baleen whales). Transcriptomic analysis, including a novel skin transcriptome from blue whale, supports gene inactivation. The conserved mutational pattern found in most analyzed genes, indicates that pseudogenization events took place prior to the diversification of modern Cetacea lineages. Genome and skin transcriptome analysis of the common hippopotamus highlighted the convergent loss of a subset of sebum-producing genes, notably Awat1 and Mogat3. Partial loss profiles were also detected in non-Cetacea aquatic mammals, such as the Florida manatee, and in terrestrial mammals displaying specialized skin phenotypes such as the African elephant, white rhinoceros and pig. Our findings reveal a unique landscape of “gene vestiges” in the Cetacea sebum-producing compartment, with limited gene loss observed in other mammalian lineages: suggestive of specific adaptations or specializations of skin lipids.This work was supported by Project No. 031342 cofinanced by COMPETE 2020, Portugal 2020 and the European Union through the ERDF, and by Fundac¸a~o para a Cie^ncia e a Tecnologia through national funds. R.R.F. thanks the Danish National Research Foundation for its support of the Center for Macroecology, Evolution, and Climate (grant DNRF96). We acknowledge the various Cetacea genome consortiums for genome sequencing and assemblies. We also thank Gısli Vikingsson at the Marine and Freshwater Research Institute in Iceland for lending us the Larsen gun and to North Sailing whale watching for the use of their zodiac.Peer Reviewe

    Abundance of whales in West and East Greenland in summer 2015

    Get PDF
    An aerial line transect survey of whales in West and East Greenland was conducted in August-September 2015. The survey covered the area between the coast of West Greenland and offshore (up to 100 km) to the shelf break. In East Greenland, the survey lines covered the area from the coast up to 50 km offshore crossing the shelf break. A total of 423 sightings of 12 cetacean species were obtained and abundance estimates were developed for common minke whale, (Balaenoptera acutorostrata) (32 sightings), fin whale (Balaenoptera physalus) (129 sightings), humpback whale (Megaptera novaeangliae) (84 sightings), harbour porpoise (Phocoena phocoena) (55 sightings), long-finned pilot whale, (Globicephala melas) (42 sightings) and white-beaked dolphin (Lagenorhynchus albirostri) (50 sightings). The developed at-surface abundance estimates were corrected for both perception bias and availability bias if possible. Data on surface corrections for minke whales and harbour porpoises were collected from whales instrumented with satellite-linked time-depth-recorders. Options for estimation methods are presented and the preferred estimates are: minke whales: 5,095 (95% CI: 2,171-11,961) in West Greenland and 2,762 (95% CI: 1,160-6,574) in East Greenland, fin whales: 2,215 (95% CI: 1,017-4,823) in West Greenland and 6,440 (95% CI: 3,901-10,632) in East Greenland, humpback whales: 993 (95% CI: 434-2,272) in West Greenland and 4,223 (95% CI: 1,845-9,666) in East Greenland, harbour porpoises: 83,321 (95% CI: 43,377-160,047) in West Greenland and 1,642 (95% CI: 319-8,464) in East Greenland, pilot whales: 9,190 (95% CI: 3,635-23,234) in West Greenland and 258 (95% CI: 50-1,354) in East Greenland, white-beaked dolphins 15,261 (95% CI: 7,048-33,046) in West Greenland and 11,889 (95% CI: 4,710-30,008) in East Greenland. The abundance of cetaceans in coastal areas of East Greenland has not been estimated before, but the limited historical information from the area indicates that the achieved abundance estimates were remarkably high. When comparing the abundance estimates from 2015 in West Greenland with a similar survey conducted in 2007, there is a clear trend towards lower densities in 2015 for the three baleen whale species and white-beaked dolphins. Harbour porpoises and pilot whales, however, did not show a similar decline. The decline in baleen whale and white-beaked dolphin abundance is likely due to emigration to the East Greenland shelf areas where recent climate driven changes in pelagic productivity may have accelerated favourable conditions for these species

    Preeclamptic Placenta:New Insights Using Placental Magnetic Resonance Imaging

    No full text
    corecore