4 research outputs found

    Multi-Omics Profiling in Marfan Syndrome: Further Insights into the Molecular Mechanisms Involved in Aortic Disease

    Get PDF
    Thoracic aortic aneurysm is a potentially life-threatening disease with a strong genetic contribution. Despite identification of multiple genes involved in aneurysm formation, little is known about the specific underlying mechanisms that drive the pathological changes in the aortic wall. The aim of our study was to unravel the molecular mechanisms underlying aneurysm formation in Marfan syndrome (MFS). We collected aortic wall samples from FBN1 variant-positive MFS patients (n = 6) and healthy donor hearts (n = 5). Messenger RNA (mRNA) expression levels were measured by RNA sequencing and compared between MFS patients and controls, and between haploinsufficient (HI) and dominant negative (DN) FBN1 variants. Immunohistochemical staining, proteomics and cellular respiration experiments were used to confirm our findings. FBN1 mRNA expression levels were highly variable in MFS patients and did not significantly differ from controls. Moreover, we did not identify a distinctive TGF-β gene expression signature in MFS patients. On the contrary, differential gene and protein expression analysis, as well as vascular smooth muscle cell respiration measurements, pointed toward inflammation and mitochondrial dysfunction. Our findings confirm that inflammatory and mitochondrial pathways play important roles in the pathophysiological processes underlying MFS-related aortic disease, providing new therapeutic options

    Web-accessible application for identifying pathogenic transcripts with RNA-seq: Increased sensitivity in diagnosis of neurodevelopmental disorders

    No full text
    For neurodevelopmental disorders (NDDs), a molecular diagnosis is key for management, predicting outcome, and counseling. Often, routine DNA-based tests fail to establish a genetic diagnosis in NDDs. Transcriptome analysis (RNA sequencing [RNA-seq]) promises to improve the diagnostic yield but has not been applied to NDDs in routine diagnostics. Here, we explored the diagnostic potential of RNA-seq in 96 individuals including 67 undiagnosed subjects with NDDs. We performed RNA-seq on single individuals' cultured skin fibroblasts, with and without cycloheximide treatment, and used modified OUTRIDER Z scores to detect gene expression outliers and mis-splicing by exonic and intronic outliers. Analysis was performed by a user-friendly web application, and candidate pathogenic transcriptional events were confirmed by secondary assays. We identified intragenic deletions, monoallelic expression, and pseudoexonic insertions but also synonymous and non-synonymous variants with deleterious effects on transcription, increasing the diagnostic yield for NDDs by 13%. We found that cycloheximide treatment and exonic/intronic Z score analysis increased detection and resolution of aberrant splicing. Importantly, in one individual mis-splicing was found in a candidate gene nearly matching the individual's specific phenotype. However, pathogenic splicing occurred in another neuronal-expressed gene and provided a molecular diagnosis, stressing the need to customize RNA-seq. Lastly, our web browser application allowed custom analysis settings that facilitate diagnostic application and ranked pathogenic transcripts as top candidates. Our results demonstrate that RNA-seq is a complementary method in the genomic diagnosis of NDDs and, by providing accessible analysis with improved sensitivity, our transcriptome analysis approach facilitates wider implementation of RNA-seq in routine genome diagnostics

    Heterogeneous clinical phenotypes and cerebral malformations reflected by rotatin cellular dynamics

    Get PDF
    Recessive mutations in RTTN, encoding the protein rotatin, were originally identified as cause of polymicrogyria, a cortical malformation. With time, a wide variety of other brain malformations has been ascribed to RTTN mutations, including primary microcephaly. Rotatin is a centrosomal protein possibly involved in centriolar elongation and ciliogenesis. However, the function of rotatin in brain development is largely unknown and the molecular disease mechanism underlying cortical malformations has not yet been elucidated. We performed both clinical and cell biological studies, aimed at clarifying rotatin function and pathogenesis. Review of the 23 published and five unpublished clinical cases and genomic mutations, including the effect of novel deep intronic pathogenic mutations on RTTN transcripts, allowed us to extrapolate the core phenotype, consisting of intellectual disability, short stature, microcephaly, lissencephaly, periventricular heterotopia, polymicrogyria and other malformations. We show that the severity of the phenotype is related to residual function of the protein, not only the level of mRNA expression. Skin fibroblasts from eight affected individuals were studied by high resolution immunomicroscopy and flow cytometry, in parallel with in vitro expression of RTTN in HEK293T cells. We demonstrate that rotatin regulates different phases of the cell cycle and is mislocalized in affected individuals. Mutant cells showed consistent and severe mitotic failure with centrosome amplification and multipolar spindle formation, leading to aneuploidy and apoptosis, which could relate to depletion of neuronal progenitors often observed in microcephaly. We confirmed the role of rotatin in functional and structural maintenance of primary cilia and determined that the protein localized not only to the basal body, but also to the axoneme, proving the functional interconnectivity between ciliogenesis and cell cycle progression. Proteomics analysis of both native and exogenous rotatin uncovered that rotatin interacts with the neuronal (non-muscle) myosin heavy chain subunits, motors of nucleokinesis during neuronal migration, and in human induced pluripotent stem cell-derived bipolar mature neurons rotatin localizes at the centrosome in the leading edge. This illustrates the role of rotatin in neuronal migration. These different functions of rotatin explain why RTTN mutations can lead to heterogeneous cerebral malformations, both related to proliferation and migration defects
    corecore