41 research outputs found

    Wnt and Hedgehog Are Critical Mediators of Cigarette Smoke-Induced Lung Cancer

    Get PDF
    BACKGROUND: Lung cancer is the leading cause of cancer death in the world, and greater than 90% of lung cancers are cigarette smoke-related. Current treatment options are inadequate, because the molecular basis of cigarette-induced lung cancer is poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: Here, we show that human primary or immortalized bronchial epithelial cells exposed to cigarette smoke for eight days in culture rapidly proliferate, show anchorage-independent growth, and form tumors in nude mice. Using this model of the early stages of smoke-induced tumorigenesis, we examined the molecular changes leading to lung cancer. We observed that the embryonic signaling pathways mediated by Hedgehog and Wnt are activated by smoke. Pharmacological inhibition of these pathways blocked the transformed phenotype. CONCLUSIONS/SIGNIFICANCE: These experiments provide a model in which the early stages of smoke-induced tumorigenesis can be elicited, and should permit us to identify molecular changes driving this process. Results obtained so far indicate that smoke-induced lung tumors are driven by activation of two embryonic regulatory pathways, Hedgehog (Hh) and Wnt. Based on the current and emerging availability of drugs to inhibit Hh and Wnt signaling, it is possible that an understanding of the role of Hh and Wnt in lung cancer pathogenesis will lead to the development of new therapies

    Establishing PAX6 as a Biomarker to Detect Early Loss of Ocular Phenotype in Human Patients With Sjögren's Syndrome

    No full text
    PurposeSjögren's syndrome (SS) is a common autoimmune disease that can cause aqueous-deficient dry eye and the aberrant differentiation of ocular mucosal epithelial cells toward a lineage that is pathologically keratinized and skin-like. PAX6 is the master regulator of corneal lineage commitment. Recently, we showed a functional role for PAX6 in preventing ocular surface damage induced by the proinflammatory cytokine, IL-1β, in a mouse model of SS. Here, we examine PAX6's potential as a clinical biomarker that predicts ocular surface disease in SS patients.MethodsImpression cytology specimens isolated from the bulbar conjunctiva of control (n = 43) and SS patients (n = 43) were used to evaluate the relative abundance of PAX6, IL-1β, and pathologic keratinization marker, small proline-rich protein (SPRR1B) by TaqMan qPCR. Transcript expression was examined relative to clinical data, including the ocular staining score (OSS), tear breakup time (TBUT), Schirmer tear test, serum autoantibody results, and the labial salivary gland focus score.ResultsPAX6 expression was significantly reduced in SS patients (P = 0.010, Wilcoxon rank sum test), and highly correlated with OSS (Spearman ρ = 0.239, 95% CI 0.02-0.43; P = 0.027). The extent to which PAX6 predicted SPRR1B was largely dependent on IL-1β expression (R(2) = 0.28, P < 0.01) and elevated IL-1β predicted reduced TBUT (R(2) = 0.24, P = 0.035), low tear secretion (R(2) = 0.30, P = 0.011), and focus score (R(2) = 0.21, P = 0.002).ConclusionsDownregulation of PAX6 in SS patients was highly associated with ocular surface damage and largely dependent on the level of inflammation. Restoration of PAX6 may provide a clinical approach to manage dry eye in SS patients

    Molecular Mechanism of Proinflammatory Cytokine-Mediated Squamous Metaplasia in Human Corneal Epithelial Cells

    No full text
    Knowledge of the molecular mechanisms involved in immune-mediated ocular surface keratinization is necessary to develop targeted therapies. In this report, the authors identify novel aspects of the signaling pathways that connect the proinflammatory cytokines IL-1β and IFN-γ with the expression of the squamous cell biomarker SPRR1B

    TACE/ADAM-17 phosphorylation by PKC-epsilon mediates premalignant changes in tobacco smoke-exposed lung cells.

    Get PDF
    Tobacco smoke predisposes humans and animals to develop lung tumors, but the molecular events responsible for this are poorly understood. We recently showed that signaling mechanisms triggered by smoke in lung cells could lead to the activation of a growth factor signaling pathway, thereby promoting hyperproliferation of lung epithelial cells. Hyperproliferation is considered a premalignant change in the lung, in that increased rates of DNA synthesis are associated with an increased number of DNA copying errors, events that are exacerbated in the presence of tobacco smoke carcinogens. Despite the existence of DNA repair mechanisms, a small percentage of these errors go unrepaired and can lead to tumorigenic mutations. The results of our previous study showed that an early event following smoke exposure was the generation of oxygen radicals through the activation of NADPH oxidase. Although it was clear that these radicals transduced signals through the epidermal growth factor receptor (EGFR), and that this was mediated by TACE-dependent cleavage of amphiregulin, it remained uncertain how oxygen radicals were able to activate TACE.In the present study, we demonstrate for the first time that phosphorylation of TACE at serine/threonine residues by tobacco smoke induces amphiregulin release and EGFR activation. TACE phosphorylation is triggered in smoke-exposed lung cells by the ROS-induced activation of PKC through the action of SRC kinase. Furthermore, we identified PKCε as the PKC isoform involved in smoke-induced TACE activation and hyperproliferation of lung cells.Our data elucidate new signaling paradigms by which tobacco smoke promotes TACE activation and hyperproliferation of lung cells
    corecore