93 research outputs found

    The role of non-coding RNAs as prognostic factor, predictor of drug response or resistance and pharmacological targets, in the cutaneous squamous cell carcinoma

    Get PDF
    Cutaneous squamous cell carcinoma (CSCC) is the most common keratinocyte-derived skin cancer in the Caucasian population. Exposure to UV radiations (UVRs) represents the main risk carcinogenesis, causing a considerable accumulation of DNA damage in epidermal keratinocytes with an uncontrolled hyperproliferation and tumor development. The limited and rarely durable response of CSCC to the current therapeutic options has led researchers to look for new therapeutic strategies. Recently, the multi-omics approaches have contributed to the identification and prediction ofthe key role of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), circularRNAs (circRNAs) and long non-coding RNAs (lncRNAs) in the regulation of several cellular processes in different tumor types, including CSCC. ncRNAs can modulate transcriptional and post-transcriptional events by interacting either with each other or with DNAand proteins, such as transcription factors and RNA-binding proteins.In this review, the implication of ncRNAs in tumorigenesis and their potential role as diagnostic biomarkers and therapeutic targets in human CSCC are reported

    Active notch protects MAPK activated melanoma cell lines from MEK inhibitor cobimetinib

    Get PDF
    The crosstalk between Notch and MAPK pathway plays a role in MEK inhibitor resistance in BRAFV600E metastatic melanoma (MM) and promotes migration in GNAQQ209L uveal melanoma (UM) cells. We determined the cytotoxicity of combinatorial inhibition of MEK and Notch by cobimetinib and Îł-secretase inhibitor (GSI) nirogacestat, in BRAFV600E and BRAF wt MM and GNAQQ209L UM cells displaying different Erk1/2 and Notch activation status, with the aim to elucidate the impact of Notch signaling in the response to MEK inhibitor. Overall the combination was synergic in BRAFV600E MM and GNAQQ209L UM cells and antagonistic in BRAF wt one. Focusing on UM cells, we found that cobimetinib resulted in G0/G1 phase arrest and apoptosis induction, whereas the combination with GSI increased treatment efficacy by inducing a senescent-like state of cells and by blocking migration towards liver cancer cells. Mechanistically, this was reflected in a strong reduction of cyclin D1, in the inactivation of retinoblastoma protein and in the increase of p27KIP1 expression levels. Of note, each drug alone prevented Notch signaling activation resulting in inhibition of c-jun(Ser63) and Hes-1 expression. The combination achieved the strongest inhibition on Notch signaling and on both c-jun(Ser63) and Erk1/2 activation level. In conclusion we unveiled a coordinate action of MAPK and Notch signaling in promoting proliferation of BRAFV600E MM and GNAQQ209L UM cells. Remarkably, the simultaneous inhibition of MEK and Notch signaling highlighted a role for the second pathway in protecting cells against senescence in GNAQQ209L UM cells treated with the MEK inhibitor

    The Interaction between Reactive Peritoneal Mesothelial Cells and Tumor Cells via Extracellular Vesicles Facilitates Colorectal Cancer Dissemination

    Get PDF
    Simple SummaryEmerging evidence has suggested that cancer-derived extracellular vesicles (EVs) have a crucial role in mediating directional metastasis to the peritoneal surface in colorectal cancer (CRC). We investigated the EV-mediated crosstalk between tumor and mesothelial cells which may drive remodeling of the premetastatic niche to allow tumor spread to the peritoneal surface. Our findings demonstrated that cancer-derived EVs triggered apoptosis and reduced mesothelial cell invasiveness and mesothelial-to-mesenchymal transition. On the other hand, mesothelial cells actively supported tumor invasion by releasing EVs, which induced upregulation of the major pro-invasive system in tumor cells. For the first time, we provide evidence of EV-driven mechanisms of CRC progression in patient-derived models, highlighting the crucial role of EVs in the reprogramming of mesothelial and tumor cells to establish the metastatic process.Advanced colorectal cancer (CRC) is highly metastatic and often results in peritoneal dissemination. The extracellular vesicles (EVs) released by cancer cells in the microenvironment are important mediators of tumor metastasis. We investigated the contribution of EV-mediated interaction between peritoneal mesothelial cells (MCs) and CRC cells in generating a pro-metastatic environment in the peritoneal cavity. Peritoneal MCs isolated from peritoneal lavage fluids displayed high CD44 expression, substantial mesothelial-to-mesenchymal transition (MMT) and released EVs that both directed tumor invasion and caused reprogramming of secretory profiles by increasing TGF-beta 1 and uPA/uPAR expression and MMP-2/9 activation in tumor cells. Notably, the EVs released by tumor cells induced apoptosis by activating caspase-3, peritoneal MC senescence, and MMT, thereby augmenting the tumor-promoting potential of these cells in the peritoneal cavity. By using pantoprazole, we reduced the biogenesis of EVs and their pro-tumor functions. In conclusion, our findings provided evidence of underlying mechanisms of CRC dissemination driven by the interaction of peritoneal MCs and tumor cells via the EVs released in the peritoneal cavity, which may have important implications for the clinical management of patients

    Cervical cancer benefits from trabectedin combination with the ÎČ-blocker propranolol: in vitro and ex vivo evaluations in patient-derived organoids

    Get PDF
    Background: Cervical cancer (CC) is characterized by genomic alterations in DNA repair genes, which could favor treatment with agents causing DNA double-strand breaks (DSBs), such as trabectedin. Hence, we evaluated the capability of trabectedin to inhibit CC viability and used ovarian cancer (OC) models as a reference. Since chronic stress may promote gynecological cancer and may hinder the efficacy of therapy, we investigated the potential of targeting ÎČ-adrenergic receptors with propranolol to enhance trabectedin efficacy and change tumor immunogenicity.Methods: OC cell lines, Caov-3 and SK-OV-3, CC cell lines, HeLa and OV2008, and patient-derived organoids were used as study models. MTT and 3D cell viability assays were used for drug(s) IC50 determination. The analysis of apoptosis, JC-1 mitochondrial membrane depolarization, cell cycle, and protein expression was performed by flow cytometry. Cell target modulation analyses were carried out by gene expression, Western blotting, immunofluorescence, and immunocytochemistry.Results: Trabectedin reduced the proliferation of both CC and OC cell lines and notably of CC patient-derived organoids. Mechanistically, trabectedin caused DNA DSBs and S-phase cell cycle arrest. Despite DNA DSBs, cells failed the formation of nuclear RAD51 foci and underwent apoptosis. Under norepinephrine stimulation, propranolol enhanced trabectedin efficacy, further inducing apoptosis through the involvement of mitochondria, Erk1/2 activation, and the increase of inducible COX-2. Notably, trabectedin and propranolol affected the expression of PD1 in both CC and OC cell lines.Conclusion: Overall, our results show that CC is responsive to trabectedin and provide translational evidence that could benefit CC treatment options. Our study pointed out that combined treatment offset trabectedin resistance caused by ÎČ-adrenergic receptor activation in both ovarian and cervical cancer models

    Patient-derived xenografts and organoids model therapy response in prostate cancer.

    Get PDF
    Therapy resistance and metastatic processes in prostate cancer (PCa) remain undefined, due to lack of experimental models that mimic different disease stages. We describe an androgen-dependent PCa patient-derived xenograft (PDX) model from treatment-naĂŻve, soft tissue metastasis (PNPCa). RNA and whole-exome sequencing of the PDX tissue and organoids confirmed transcriptomic and genomic similarity to primary tumor. PNPCa harbors BRCA2 and CHD1 somatic mutations, shows an SPOP/FOXA1-like transcriptomic signature and microsatellite instability, which occurs in 3% of advanced PCa and has never been modeled in vivo. Comparison of the treatment-naĂŻve PNPCa with additional metastatic PDXs (BM18, LAPC9), in a medium-throughput organoid screen of FDA-approved compounds, revealed differential drug sensitivities. Multikinase inhibitors (ponatinib, sunitinib, sorafenib) were broadly effective on all PDX- and patient-derived organoids from advanced cases with acquired resistance to standard-of-care compounds. This proof-of-principle study may provide a preclinical tool to screen drug responses to standard-of-care and newly identified, repurposed compounds

    Search for the lepton flavour violating decay tau(-) -> mu(-)mu(+)mu(-)

    Get PDF
    A search for the lepton flavour violating decay τ−→Ό−Ό+Ό−\tau^-\rightarrow\mu^-\mu^+\mu^- is performed with the LHCb experiment. The data sample corresponds to an integrated luminosity of 1.0 fb−1^{−1} of proton-proton collisions at a centre-of-mass energy of 7 TeV and 2.0 fb−1^{−1} at 8 TeV. No evidence is found for a signal, and a limit is set at 90% confidence level on the branching fraction, B(τ−→Ό−Ό+Ό−)<4.6×10−8\mathcal{B}(\tau^-\rightarrow\mu^-\mu^+\mu^-)<4.6\times10^{−8}.A search for the lepton flavour violating decay τ−^{−} → Ό−^{−} ÎŒ+^{+} Ό−^{−} is performed with the LHCb experiment. The data sample corresponds to an integrated luminosity of 1.0 fb−1^{−1} of proton-proton collisions at a centre-of-mass energy of 7 TeV and 2.0 fb−1^{−1} at 8 TeV. No evidence is found for a signal, and a limit is set at 90% confidence level on the branching fraction, B(τ−→Ό−Ό+Ό−)<4.6×10−8 \mathrm{\mathcal{B}}\left({\tau}^{-}\to {\mu}^{-}{\mu}^{+}{\mu}^{-}\right)<4.6\times {10}^{-8} .A search for the lepton flavour violating decay τ−→Ό−Ό+Ό−\tau^-\to \mu^-\mu^+\mu^- is performed with the LHCb experiment. The data sample corresponds to an integrated luminosity of 1.0 fb−11.0\mathrm{\,fb}^{-1} of proton-proton collisions at a centre-of-mass energy of 7 TeV7\mathrm{\,Te\kern -0.1em V} and 2.0 fb−12.0\mathrm{\,fb}^{-1} at 8 TeV8\mathrm{\,Te\kern -0.1em V}. No evidence is found for a signal, and a limit is set at 90%90\% confidence level on the branching fraction, B(τ−→Ό−Ό+Ό−)<4.6×10−8\mathcal{B}(\tau^-\to \mu^-\mu^+\mu^-) < 4.6 \times 10^{-8}

    Observation of the B0 → ρ0ρ0 decay from an amplitude analysis of B0 → (π+π−)(π+π−) decays

    Get PDF
    Proton–proton collision data recorded in 2011 and 2012 by the LHCb experiment, corresponding to an integrated luminosity of 3.0 fb−1 , are analysed to search for the charmless B0→ρ0ρ0 decay. More than 600 B0→(π+π−)(π+π−) signal decays are selected and used to perform an amplitude analysis, under the assumption of no CP violation in the decay, from which the B0→ρ0ρ0 decay is observed for the first time with 7.1 standard deviations significance. The fraction of B0→ρ0ρ0 decays yielding a longitudinally polarised final state is measured to be fL=0.745−0.058+0.048(stat)±0.034(syst) . The B0→ρ0ρ0 branching fraction, using the B0→ϕK⁎(892)0 decay as reference, is also reported as B(B0→ρ0ρ0)=(0.94±0.17(stat)±0.09(syst)±0.06(BF))×10−6

    Measurement of the (eta c)(1S) production cross-section in proton-proton collisions via the decay (eta c)(1S) -&gt; p(p)over-bar

    Get PDF
    The production of the ηc(1S)\eta_c (1S) state in proton-proton collisions is probed via its decay to the ppˉp \bar{p} final state with the LHCb detector, in the rapidity range 2.06.52.0 6.5 GeV/c. The cross-section for prompt production of ηc(1S)\eta_c (1S) mesons relative to the prompt J/ψJ/\psi cross-section is measured, for the first time, to be σηc(1S)/σJ/ψ=1.74±0.29±0.28±0.18B\sigma_{\eta_c (1S)}/\sigma_{J/\psi} = 1.74 \pm 0.29 \pm 0.28 \pm 0.18 _{B} at a centre-of-mass energy s=7\sqrt{s} = 7 TeV using data corresponding to an integrated luminosity of 0.7 fb−1^{-1}, and σηc(1S)/σJ/ψ=1.60±0.29±0.25±0.17B\sigma_{\eta_c (1S)}/\sigma_{J/\psi} = 1.60 \pm 0.29 \pm 0.25 \pm 0.17 _{B} at s=8\sqrt{s} = 8 TeV using 2.0 fb−1^{-1}. The uncertainties quoted are, in order, statistical, systematic, and that on the ratio of branching fractions of the ηc(1S)\eta_c (1S) and J/ψJ/\psi decays to the ppˉp \bar{p} final state. In addition, the inclusive branching fraction of bb-hadron decays into ηc(1S)\eta_c (1S) mesons is measured, for the first time, to be B(b→ηcX)=(4.88±0.64±0.25±0.67B)×10−3B ( b \rightarrow \eta_c X ) = (4.88 \pm 0.64 \pm 0.25 \pm 0.67 _{B}) \times 10^{-3}, where the third uncertainty includes also the uncertainty on the J/ψJ/\psi inclusive branching fraction from bb-hadron decays. The difference between the J/ψJ/\psi and ηc(1S)\eta_c (1S) meson masses is determined to be 114.7±1.5±0.1114.7 \pm 1.5 \pm 0.1 MeV/c2^2.The production of the ηc(1S)\eta _c (1S) state in proton-proton collisions is probed via its decay to the pp‟p\overline{p} final state with the LHCb detector, in the rapidity range 2.06.5 GeV/c2.0 6.5 \mathrm{{\,GeV/}{ c}} . The cross-section for prompt production of ηc(1S)\eta _c (1S) mesons relative to the prompt J/ψ{{ J}}/{\psi } cross-section is measured, for the first time, to be σηc(1S)/σJ/ψ=1.74 ± 0.29 ± 0.28 ± 0.18B\sigma _{\eta _c (1S)}/\sigma _{{{{ J}}/{\psi }}} = 1.74\, \pm \,0.29\, \pm \, 0.28\, \pm \,0.18 _{{\mathcal{B}}} at a centre-of-mass energy s=7 TeV{\sqrt{s}} = 7 {~\mathrm{TeV}} using data corresponding to an integrated luminosity of 0.7 fb−1^{-1} , and σηc(1S)/σJ/ψ=1.60±0.29±0.25±0.17B\sigma _{\eta _c (1S)}/\sigma _{{{{ J}}/{\psi }}} = 1.60 \pm 0.29 \pm 0.25 \pm 0.17 _{{\mathcal{B}}} at s=8 TeV{\sqrt{s}} = 8 {~\mathrm{TeV}} using 2.0 fb−1^{-1} . The uncertainties quoted are, in order, statistical, systematic, and that on the ratio of branching fractions of the ηc(1S)\eta _c (1S) and J/ψ{{ J}}/{\psi } decays to the pp‟p\overline{p} final state. In addition, the inclusive branching fraction of b{b} -hadron decays into ηc(1S)\eta _c (1S) mesons is measured, for the first time, to be B(b→ηcX)=(4.88 ± 0.64 ± 0.29 ± 0.67B)×10−3{\mathcal{B}}( b {\rightarrow } \eta _c X ) = (4.88\, \pm \,0.64\, \pm \,0.29\, \pm \, 0.67 _{{\mathcal{B}}}) \times 10^{-3} , where the third uncertainty includes also the uncertainty on the J/ψ{{ J}}/{\psi } inclusive branching fraction from b{b} -hadron decays. The difference between the J/ψ{{ J}}/{\psi } and ηc(1S)\eta _c (1S) meson masses is determined to be 114.7±1.5±0.1 MeV ⁣/c2114.7 \pm 1.5 \pm 0.1 {\mathrm {\,MeV\!/}c^2} .The production of the ηc(1S)\eta_c (1S) state in proton-proton collisions is probed via its decay to the ppˉp \bar{p} final state with the LHCb detector, in the rapidity range 2.06.52.0 6.5 GeV/c. The cross-section for prompt production of ηc(1S)\eta_c (1S) mesons relative to the prompt J/ψJ/\psi cross-section is measured, for the first time, to be σηc(1S)/σJ/ψ=1.74±0.29±0.28±0.18B\sigma_{\eta_c (1S)}/\sigma_{J/\psi} = 1.74 \pm 0.29 \pm 0.28 \pm 0.18 _{B} at a centre-of-mass energy s=7\sqrt{s} = 7 TeV using data corresponding to an integrated luminosity of 0.7 fb−1^{-1}, and σηc(1S)/σJ/ψ=1.60±0.29±0.25±0.17B\sigma_{\eta_c (1S)}/\sigma_{J/\psi} = 1.60 \pm 0.29 \pm 0.25 \pm 0.17 _{B} at s=8\sqrt{s} = 8 TeV using 2.0 fb−1^{-1}. The uncertainties quoted are, in order, statistical, systematic, and that on the ratio of branching fractions of the ηc(1S)\eta_c (1S) and J/ψJ/\psi decays to the ppˉp \bar{p} final state. In addition, the inclusive branching fraction of bb-hadron decays into ηc(1S)\eta_c (1S) mesons is measured, for the first time, to be B(b→ηcX)=(4.88±0.64±0.29±0.67B)×10−3B ( b \rightarrow \eta_c X ) = (4.88 \pm 0.64 \pm 0.29 \pm 0.67 _{B}) \times 10^{-3}, where the third uncertainty includes also the uncertainty on the J/ψJ/\psi inclusive branching fraction from bb-hadron decays. The difference between the J/ψJ/\psi and ηc(1S)\eta_c (1S) meson masses is determined to be 114.7±1.5±0.1114.7 \pm 1.5 \pm 0.1 MeV/c2^2

    A study of CP violation in B-+/- -&gt; DK +/- and B-+/- -&gt; D pi(+/-) decays with D -&gt; (KSK +/-)-K-0 pi(-/+) final states

    Get PDF
    A first study of CP violation in the decay modes B±→[KS0K±π∓]Dh±B^\pm\to [K^0_{\rm S} K^\pm \pi^\mp]_D h^\pm and B±→[KS0K∓π±]Dh±B^\pm\to [K^0_{\rm S} K^\mp \pi^\pm]_D h^\pm, where hh labels a KK or π\pi meson and DD labels a D0D^0 or D‟0\overline{D}^0 meson, is performed. The analysis uses the LHCb data set collected in pppp collisions, corresponding to an integrated luminosity of 3 fb−1^{-1}. The analysis is sensitive to the CP-violating CKM phase Îł\gamma through seven observables: one charge asymmetry in each of the four modes and three ratios of the charge-integrated yields. The results are consistent with measurements of Îł\gamma using other decay modes

    Study of the rare B-s(0) and B-0 decays into the pi(+) pi(-) mu(+) mu(-) final state

    Get PDF
    A search for the rare decays Bs0→π+π−Ό+Ό−B_s^0 \to \pi^+\pi^-\mu^+\mu^- and B0→π+π−Ό+Ό−B^0 \to \pi^+\pi^-\mu^+\mu^- is performed in a data set corresponding to an integrated luminosity of 3.0 fb−1^{-1} collected by the LHCb detector in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV. Decay candidates with pion pairs that have invariant mass in the range 0.5-1.3 GeV/c2c^2 and with muon pairs that do not originate from a resonance are considered. The first observation of the decay Bs0→π+π−Ό+Ό−B_s^0 \to \pi^+\pi^-\mu^+\mu^- and the first evidence of the decay B0→π+π−Ό+Ό−B^0 \to \pi^+\pi^-\mu^+\mu^- are obtained and the branching fractions are measured to be B(Bs0→π+π−Ό+Ό−)=(8.6±1.5 (stat)±0.7 (syst)±0.7 (norm))×10−8\mathcal{B}(B_s^0 \to \pi^+\pi^-\mu^+\mu^-)=(8.6\pm 1.5\,({\rm stat}) \pm 0.7\,({\rm syst})\pm 0.7\,({\rm norm}))\times 10^{-8} and B(B0→π+π−Ό+Ό−)=(2.11±0.51 (stat)±0.15 (syst)±0.16 (norm))×10−8\mathcal{B}(B^0 \to \pi^+\pi^-\mu^+\mu^-)=(2.11\pm 0.51\,({\rm stat}) \pm 0.15\,({\rm syst})\pm 0.16\,({\rm norm}) )\times 10^{-8}, where the third uncertainty is due to the branching fraction of the decay B0→J/ψ(→Ό+Ό−)K∗(890)0(→K+π−)B^0\to J/\psi(\to \mu^+\mu^-)K^*(890)^0(\to K^+\pi^-), used as a normalisation.A search for the rare decays Bs0→π+π−Ό+Ό− and B0→π+π−Ό+Ό− is performed in a data set corresponding to an integrated luminosity of 3.0 fb−1 collected by the LHCb detector in proton–proton collisions at centre-of-mass energies of 7 and 8 TeV . Decay candidates with pion pairs that have invariant mass in the range 0.5–1.3 GeV/c2 and with muon pairs that do not originate from a resonance are considered. The first observation of the decay Bs0→π+π−Ό+Ό− and the first evidence of the decay B0→π+π−Ό+Ό− are obtained and the branching fractions, restricted to the dipion-mass range considered, are measured to be B(Bs0→π+π−Ό+Ό−)=(8.6±1.5 (stat)±0.7 (syst)±0.7(norm))×10−8 and B(B0→π+π−Ό+Ό−)=(2.11±0.51(stat)±0.15(syst)±0.16(norm))×10−8 , where the third uncertainty is due to the branching fraction of the decay B0→J/ψ(→Ό+Ό−)K⁎(892)0(→K+π−) , used as a normalisation.A search for the rare decays Bs0→π+π−Ό+Ό− and B0→π+π−Ό+Ό− is performed in a data set corresponding to an integrated luminosity of 3.0 fb−1 collected by the LHCb detector in proton–proton collisions at centre-of-mass energies of 7 and 8 TeV . Decay candidates with pion pairs that have invariant mass in the range 0.5–1.3 GeV/c2 and with muon pairs that do not originate from a resonance are considered. The first observation of the decay Bs0→π+π−Ό+Ό− and the first evidence of the decay B0→π+π−Ό+Ό− are obtained and the branching fractions, restricted to the dipion-mass range considered, are measured to be B(Bs0→π+π−Ό+Ό−)=(8.6±1.5 (stat)±0.7 (syst)±0.7(norm))×10−8 and B(B0→π+π−Ό+Ό−)=(2.11±0.51(stat)±0.15(syst)±0.16(norm))×10−8 , where the third uncertainty is due to the branching fraction of the decay B0→J/ψ(→Ό+Ό−)K⁎(892)0(→K+π−) , used as a normalisation.A search for the rare decays Bs0→π+π−Ό+Ό−B_s^0 \to \pi^+\pi^-\mu^+\mu^- and B0→π+π−Ό+Ό−B^0 \to \pi^+\pi^-\mu^+\mu^- is performed in a data set corresponding to an integrated luminosity of 3.0 fb−1^{-1} collected by the LHCb detector in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV. Decay candidates with pion pairs that have invariant mass in the range 0.5-1.3 GeV/c2c^2 and with muon pairs that do not originate from a resonance are considered. The first observation of the decay Bs0→π+π−Ό+Ό−B_s^0 \to \pi^+\pi^-\mu^+\mu^- and the first evidence of the decay B0→π+π−Ό+Ό−B^0 \to \pi^+\pi^-\mu^+\mu^- are obtained and the branching fractions, restricted to the dipion-mass range considered, are measured to be B(Bs0→π+π−Ό+Ό−)=(8.6±1.5 (stat)±0.7 (syst)±0.7 (norm))×10−8\mathcal{B}(B_s^0 \to \pi^+\pi^-\mu^+\mu^-)=(8.6\pm 1.5\,({\rm stat}) \pm 0.7\,({\rm syst})\pm 0.7\,({\rm norm}))\times 10^{-8} and B(B0→π+π−Ό+Ό−)=(2.11±0.51 (stat)±0.15 (syst)±0.16 (norm))×10−8\mathcal{B}(B^0 \to \pi^+\pi^-\mu^+\mu^-)=(2.11\pm 0.51\,({\rm stat}) \pm 0.15\,({\rm syst})\pm 0.16\,({\rm norm}) )\times 10^{-8}, where the third uncertainty is due to the branching fraction of the decay B0→J/ψ(→Ό+Ό−)K∗(890)0(→K+π−)B^0\to J/\psi(\to \mu^+\mu^-)K^*(890)^0(\to K^+\pi^-), used as a normalisation
    • 

    corecore