4 research outputs found

    On Assessing Trustworthy AI in Healthcare. Machine Learning as a Supportive Tool to Recognize Cardiac Arrest in Emergency Calls

    Get PDF
    Artificial Intelligence (AI) has the potential to greatly improve the delivery of healthcare and other services that advance population health and wellbeing. However, the use of AI in healthcare also brings potential risks that may cause unintended harm. To guide future developments in AI, the High-Level Expert Group on AI set up by the European Commission (EC), recently published ethics guidelines for what it terms “trustworthy” AI. These guidelines are aimed at a variety of stakeholders, especially guiding practitioners toward more ethical and more robust applications of AI. In line with efforts of the EC, AI ethics scholarship focuses increasingly on converting abstract principles into actionable recommendations. However, the interpretation, relevance, and implementation of trustworthy AI depend on the domain and the context in which the AI system is used. The main contribution of this paper is to demonstrate how to use the general AI HLEG trustworthy AI guidelines in practice in the healthcare domain. To this end, we present a best practice of assessing the use of machine learning as a supportive tool to recognize cardiac arrest in emergency calls. The AI system under assessment is currently in use in the city of Copenhagen in Denmark. The assessment is accomplished by an independent team composed of philosophers, policy makers, social scientists, technical, legal, and medical experts. By leveraging an interdisciplinary team, we aim to expose the complex trade-offs and the necessity for such thorough human review when tackling socio-technical applications of AI in healthcare. For the assessment, we use a process to assess trustworthy AI, called 1Z-Inspection® to identify specific challenges and potential ethical trade-offs when we consider AI in practice.</jats:p

    Combining Fast and Slow Thinking for Human-like and Efficient Navigation in Constrained Environments

    No full text
    Current AI systems lack several important human capabilities, such as adaptability, generalizability, self-control, consistency, common sense, and causal reasoning. We believe that existing cognitive theories of human decision making, such as the thinking fast and slow theory, can provide insights on how to advance AI systems towards some of these capabilities. In this paper, we propose a general architecture that is based on fast/slow solvers and a metacognitive component. We then present experimental results on the behavior of an instance of this architecture, for AI systems that make decisions about navigating in a constrained environment. We show how combining the fast and slow decision modalities allows the system to evolve over time and gradually pass from slow to fast thinking with enough experience, and that this greatly helps in decision quality, resource consumption, and efficiency

    On Assessing Trustworthy AI in Healthcare: Machine Learning as a Supportive Tool to Recognize Cardiac Arrest in Emergency Calls

    No full text
    Artificial Intelligence (AI) has the potential to greatly improve the delivery of healthcare and other services that advance population health and wellbeing. However, the use of AI in healthcare also brings potential risks that may cause unintended harm. To guide future developments in AI, the High-Level Expert Group on AI set up by the European Commission (EC), recently published ethics guidelines for what it terms “trustworthy” AI. These guidelines are aimed at a variety of stakeholders, especially guiding practitioners toward more ethical and more robust applications of AI. In line with efforts of the EC, AI ethics scholarship focuses increasingly on converting abstract principles into actionable recommendations. However, the interpretation, relevance, and implementation of trustworthy AI depend on the domain and the context in which the AI system is used. The main contribution of this paper is to demonstrate how to use the general AI HLEG trustworthy AI guidelines in practice in the healthcare domain. To this end, we present a best practice of assessing the use of machine learning as a supportive tool to recognize cardiac arrest in emergency calls. The AI system under assessment is currently in use in the city of Copenhagen in Denmark. The assessment is accomplished by an independent team composed of philosophers, policy makers, social scientists, technical, legal, and medical experts. By leveraging an interdisciplinary team, we aim to expose the complex trade-offs and the necessity for such thorough human review when tackling socio-technical applications of AI in healthcare. For the assessment, we use a process to assess trustworthy AI, called 1 Z-Inspection ® to identify specific challenges and potential ethical trade-offs when we consider AI in practice

    On Assessing Trustworthy AI in Healthcare: Machine Learning as a Supportive Tool to Recognize Cardiac Arrest in Emergency Calls

    Get PDF
    Artificial Intelligence (AI) has the potential to greatly improve the delivery of healthcare and other services that advance population health and wellbeing. However, the use of AI in healthcare also brings potential risks that may cause unintended harm. To guide future developments in AI, the High-Level Expert Group on AI set up by the European Commission (EC), recently published ethics guidelines for what it terms “trustworthy” AI. These guidelines are aimed at a variety of stakeholders, especially guiding practitioners toward more ethical and more robust applications of AI. In line with efforts of the EC, AI ethics scholarship focuses increasingly on converting abstract principles into actionable recommendations. However, the interpretation, relevance, and implementation of trustworthy AI depend on the domain and the context in which the AI system is used. The main contribution of this paper is to demonstrate how to use the general AI HLEG trustworthy AI guidelines in practice in the healthcare domain. To this end, we present a best practice of assessing the use of machine learning as a supportive tool to recognize cardiac arrest in emergency calls. The AI system under assessment is currently in use in the city of Copenhagen in Denmark. The assessment is accomplished by an independent team composed of philosophers, policy makers, social scientists, technical, legal, and medical experts. By leveraging an interdisciplinary team, we aim to expose the complex trade-offs and the necessity for such thorough human review when tackling socio-technical applications of AI in healthcare. For the assessment, we use a process to assess trustworthy AI, called 1Z-Inspection® to identify specific challenges and potential ethical trade-offs when we consider AI in practice
    corecore