70 research outputs found

    Comparison of Phenotypic Value Changes in Pure Lines of \u3cem\u3eBombyx mori\u3c/em\u3e (Lepidoptera: Bombycidae) During Consecutive Generations Following Initial Selection on Cocoon Weight

    Get PDF
    The experiments reported here were conducted to investigate the effect of selection on three quantitative traits, namely cocoon weight, cocoon shell weight, and cocoon shell percentage, during four generations by rearing six pure breeds of domesticated silkworm, Bombyx mori L. (Lepidoptera: Bombycidae) of Chinese and Japanese origin compared with random unselected groups as controls. All stages of rearing and data recording were performed over four rearing periods, with generations 1–3 during successive spring seasons and generation 4 during the autumn season in year 3. Each pure line contained two groups of selected and random (control) groups. Comparisons included the effect of selection methods, pure line, and generation on the phenotypic values. We found strong main effects of pure line, generation, sex, and group and support for nearly all interactions between these main effects for all three response traits. The results indicated that cocoon weight and cocoon shell weight in the selected group were higher than in the control or nonselected group. Both selected and nonselected groups had the lowest cocoon weight, cocoon shell weight, and cocoon shell percentage in the fourth generation when environmental conditions during the autumn season were less favorable than spring. The cocoon weight and cocoon shell weight averages were higher for nonselected groups in the second and third generations, and for the selected group in the first generation due to the direct effect of selection

    Silkworm genomics - progress and prospects

    Get PDF
    The biology and genetics of silkworm, Bombyx mori, is the most advanced of any lepidopteran species. Its rich repertoire of genetic resources and potential applications in sericulture and as a model for other Lepidoptera led to the initiation of genomics research. During the past decade much effort has been made in the areas of marker development, and molecular maps have been constructed in standard strains with the use of RFLPs, RAPDs, ISSRs, STSs, and microsatellites. The potential applications of molecular markers and linkage maps include stock identification, Marker Assisted Selection (MAS), identification of Quantitative Trait Loci (QTL), and, ultimately, positional cloning of visible mutations and QTL. To these ends, BAC libraries have been constructed and are being used to make large-scale physical maps, with markers based on ESTs as framework anchors. Altogether this work provides a foundation for identification of gene function, gene and chromosome evolution, and comparative genomics

    Multifaceted biological insights from a draft genome sequence of the tobacco hornworm moth, \u3cem\u3eManduca sexta\u3c/em\u3e

    Get PDF
    Manduca sexta, known as the tobacco hornworm or Carolina sphinx moth, is a lepidopteran insect that is used extensively as a model system for research in insect biochemistry, physiology, neurobiology, development, and immunity. One important benefit of this species as an experimental model is its extremely large size, reaching more than 10 g in the larval stage. M. sexta larvae feed on solanaceous plants and thus must tolerate a substantial challenge from plant allelochemicals, including nicotine. We report the sequence and annotation of the M. sexta genome, and a survey of gene expression in various tissues and developmental stages. The Msex_1.0 genome assembly resulted in a total genome size of 419.4 Mbp. Repetitive sequences accounted for 25.8% of the assembled genome. The official gene set is comprised of 15,451 protein-coding genes, of which 2498 were manually curated. Extensive RNA-seq data from many tissues and developmental stages were used to improve gene models and for insights into gene expression patterns. Genome wide synteny analysis indicated a high level of macrosynteny in the Lepidoptera. Annotation and analyses were carried out for gene families involved in a wide spectrum of biological processes, including apoptosis, vacuole sorting, growth and development, structures of exoskeleton, egg shells, and muscle, vision, chemosensation, ion channels, signal transduction, neuropeptide signaling, neurotransmitter synthesis and transport, nicotine tolerance, lipid metabolism, and immunity. This genome sequence, annotation, and analysis provide an important new resource from a well-studied model insect species and will facilitate further biochemical and mechanistic experimental studies of many biological systems in insects

    Advances in the Arms Race Between Silkworm and Baculovirus

    Get PDF
    Insects are the largest group of animals. Nearly all organisms, including insects, have viral pathogens. An important domesticated economic insect is the silkworm moth Bombyx mori. B. mori nucleopolyhedrovirus (BmNPV) is a typical baculovirus and a primary silkworm pathogen. It causes major economic losses in sericulture. Baculoviruses are used in biological pest control and as a bioreactor. Silkworm and baculovirus comprise a well-established model of insect–virus interactions. Several recent studies have focused on this model and provided novel insights into viral infections and host defense. Here, we focus on baculovirus invasion, silkworm immune response, baculovirus evasion of host immunity, and enhancement of antiviral efficacy. We also discuss major issues remaining and future directions of research on silkworm antiviral immunity. Elucidation of the interaction between silkworm and baculovirus furnishes a theoretical basis for targeted pest control, enhanced pathogen resistance in economically important insects, and bioreactor improvement

    The Glanville fritillary genome retains an ancient karyotype and reveals selective chromosomal fusions in Lepidoptera

    Get PDF
    Previous studies have reported that chromosome synteny in Lepidoptera has been well conserved, yet the number of haploid chromosomes varies widely from 5 to 223. Here we report the genome (393Mb) of the Glanville fritillary butterfly (Melitaea cinxia; Nymphalidae), a widely recognized model species in metapopulation biology and eco-evolutionary research, which has the putative ancestral karyotype of nÂĽ31. Using a phylogenetic analyses of Nymphalidae and of other Lepidoptera, combined with orthologue-level comparisons of chromosomes, we conclude that the ancestral lepidopteran karyotype has been nÂĽ31 for at least 140My. We show that fusion chromosomes have retained the ancestral chromosome segments and very few rearrangements have occurred across the fusion sites. The same, shortest ancestral chromosomes have independently participated in fusion events in species with smaller karyotypes. The short chromosomes have higher rearrangement rate than long ones. These characteristics highlight distinctive features of the evolutionary dynamics of butterflies and moths

    Chromatin-induced Spindle Assembly Plays an Important Role in Metaphase Congression of Silkworm Holocentric Chromosomes

    Get PDF
    The kinetochore plays important roles in cell cycle progression. Interactions between 4 chromosomes and spindle microtubules allow chromosomes to congress to the middle of the 5 cell and to segregate the sister chromatids into daughter cells in mitosis. The chromosome 6 passenger complex (CPC), composed of the Aurora B kinase and its regulatory subunits 7 INCENP, Survivin, and Borealin, plays multiple roles in these chromosomal events. In the 8 genome of the silkworm, Bombyx mori, which has holocentric chromosomes, the CPC 9 components and their molecular interactions were highly conserved. In contrast to 10 monocentric species, however, the silkworm CPC co-localized with the chromatin-driven 11 spindles on the upper side of prometaphase chromosomes without forming bipolar mitotic 12 spindles. Depletion of the CPC by RNAi arrested the cell cycle progression at prometaphase 13 and disrupted the microtubule network of the chromatin-driven spindles. Interestingly, 14 depletion of mitotic centromere-associated kinesin (MCAK) recovered formation of the 15 microtubule network but did not overcome the cell cycle arrest at prometaphase. These 16 results suggest that the CPC modulates the chromatin-induced spindle assembly and 17 metaphase congression of silkworm holocentric chromosomes

    Linkage analysis of the visible mutations Sel and Xan of Bombyx mori (Lepidoptera: Bombycidae) using SSR markers

    Get PDF
    Wild type silkworm larvae have opaque white skin, whereas the mutants Sel (Sepialumazine) and Xan (Xanthous) are yellow-skinned. Previous genetic analysis indicated that Sel and Xan are on established linkage groups 24 (0.0) and 27 (0.0), respectively. However, in constructing a molecular linkage map using simple sequence repeat (SSR) loci, we found that the two mutations were linked. To confirm this finding, we developed a set of SSR markers and used them to score reciprocal backcross populations. Taking advantage of the lack of crossing-over in female silkworms, we found that the progeny of backcrosses between F1 females and males of the parental strains (BC1F) of the two visible mutations had the same inheritance patterns linked to the same SSR markers. This indicated that the two visible mutations belonged to the same chromosome. To confirm this finding, we tested for independent assortment by crossing Sel and Xan marker strains with each other to obtain F1 and F2 populations. Absence of the expected wild type class among 5000 F2 progeny indicated that the two visible mutations were located on the same linkage group. We carried out recombination analysis for each mutation by scoring 190 progeny of backcrosses between F1 males and parental females (BC1M) and constructed a linkage map for each strain. The results indicated that the Sel gene was 12 cM from SSR marker S2404, and the Xan gene was 7.03 cM from SSR marker S2407. To construct a combined SSR map and to avoid having to discriminate the two similar dominant mutations in heterozygotes, we carried out recombination analysis by scoring recessive wild type segregants of F2 populations for each mutation. The results showed that the Sel and Xan genes were 13 cM and 13.7 cM from the S2404 marker, respectively, consistent with the possibility that they are alleles of the same locus, which we provisionally assigned to SSR linkage group 24. We also used the F2 recessive populations to construct two linkage groups for the Sel and Xan genes

    Construction and sequence sampling of deep-coverage, large-insert BAC libraries for three model lepidopteran species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Manduca sexta, Heliothis virescens</it>, and <it>Heliconius erato </it>represent three widely-used insect model species for genomic and fundamental studies in Lepidoptera. Large-insert BAC libraries of these insects are critical resources for many molecular studies, including physical mapping and genome sequencing, but not available to date.</p> <p>Results</p> <p>We report the construction and characterization of six large-insert BAC libraries for the three species and sampling sequence analysis of the genomes. The six BAC libraries were constructed with two restriction enzymes, two libraries for each species, and each has an average clone insert size ranging from 152–175 kb. We estimated that the genome coverage of each library ranged from 6–9 ×, with the two combined libraries of each species being equivalent to 13.0–16.3 × haploid genomes. The genome coverage, quality and utility of the libraries were further confirmed by library screening using 6~8 putative single-copy probes. To provide a first glimpse into these genomes, we sequenced and analyzed the BAC ends of ~200 clones randomly selected from the libraries of each species. The data revealed that the genomes are AT-rich, contain relatively small fractions of repeat elements with a majority belonging to the category of low complexity repeats, and are more abundant in retro-elements than DNA transposons. Among the species, the <it>H. erato </it>genome is somewhat more abundant in repeat elements and simple repeats than those of <it>M. sexta </it>and <it>H. virescens</it>. The BLAST analysis of the BAC end sequences suggested that the evolution of the three genomes is widely varied, with the genome of <it>H. virescens </it>being the most conserved as a typical lepidopteran, whereas both genomes of <it>H. erato </it>and <it>M. sexta </it>appear to have evolved significantly, resulting in a higher level of species- or evolutionary lineage-specific sequences.</p> <p>Conclusion</p> <p>The high-quality and large-insert BAC libraries of the insects, together with the identified BACs containing genes of interest, provide valuable information, resources and tools for comprehensive understanding and studies of the insect genomes and for addressing many fundamental questions in Lepidoptera. The sample of the genomic sequences provides the first insight into the constitution and evolution of the insect genomes.</p

    An integrated genetic linkage map for silkworms with three parental combinations and its application to the mapping of single genes and QTL

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Bombyx mori</it>, the domesticated silkworm, is a well-studied model insect with great economic and scientific significance. Although more than 400 mutations have been described in silkworms, most have not been identified, especially those affecting economically-important traits. Simple sequence repeats (SSRs) are effective and economical tools for mapping traits and genetic improvement. The current SSR linkage map is of low density and contains few polymorphisms. The purpose of this work was to develop a dense and informative linkage map that would assist in the preliminary mapping and dissection of quantitative trait loci (QTL) in a variety of silkworm strains.</p> <p>Results</p> <p>Through an analysis of > 50,000 genotypes across new mapping populations, we constructed two new linkage maps covering 27 assigned chromosomes and merged the data with previously reported data sets. The integrated consensus map contains 692 unique SSR sites, improving the density from 6.3 cM in the previous map to 4.8 cM. We also developed 497 confirmed neighboring markers for corresponding low-polymorphism sites, with 244 having polymorphisms. Large-scale statistics on the SSR type were suggestive of highly efficient markers, based upon which we searched 16,462 available genomic scaffolds for SSR loci. With the newly constructed map, we mapped single-gene traits, the QTL of filaments, and a number of ribosomal protein genes.</p> <p>Conclusion</p> <p>The integrated map produced in this study is a highly efficient genetic tool for the high-throughput mapping of single genes and QTL. Compared to previous maps, the current map offers a greater number of markers and polymorphisms; thus, it may be used as a resource for marker-assisted breeding.</p

    Extensive Conserved Synteny of Genes Between the Karyotypes of \u3cem\u3eManduca sexta\u3c/em\u3e and \u3cem\u3eBombyx mori\u3c/em\u3e Revealed by BAC-FISH Mapping

    Get PDF
    Background: Genome sequencing projects have been completed for several species representing four highly diverged holometabolous insect orders, Diptera, Hymenoptera, Coleoptera, and Lepidoptera. The striking evolutionary diversity of insects argues a need for efficient methods to apply genome information from such models to genetically uncharacterized species. Constructing conserved synteny maps plays a crucial role in this task. Here, we demonstrate the use of fluorescence in situ hybridization with bacterial artificial chromosome probes as a powerful tool for physical mapping of genes and comparative genome analysis in Lepidoptera, which have numerous and morphologically uniform holokinetic chromosomes. Methodology/Principal Findings: We isolated 214 clones containing 159 orthologs of well conserved single-copy genes of a sequenced lepidopteran model, the silkworm, Bombyx mori, from a BAC library of a sphingid with an unexplored genome, the tobacco hornworm, Manduca sexta. We then constructed a BAC-FISH karyotype identifying all 28 chromosomes of M. sexta by mapping 124 loci using the corresponding BAC clones. BAC probes from three M. sexta chromosomes also generated clear signals on the corresponding chromosomes of the convolvulus hawk moth, Agrius convolvuli, which belongs to the same subfamily, Sphinginae, as M. sexta. Conclusions/Significance: Comparison of the M. sexta BAC physical map with the linkage map and genome sequence of B. mori pointed to extensive conserved synteny including conserved gene order in most chromosomes. Only a few rearrangements, including three inversions, three translocations, and two fission/fusion events were estimated to have occurred after the divergence of Bombycidae and Sphingidae. These results add to accumulating evidence for the stability of lepidopteran genomes. Generating signals on A. convolvuli chromosomes using heterologous M. sexta probes demonstrated that BAC-FISH with orthologous sequences can be used for karyotyping a wide range of related and genetically uncharacterized species, significantly extending the ability to develop synteny maps for comparative and functional genomics
    • …
    corecore