24 research outputs found

    Biomimetic Calcium Phosphates Derived from Marine and Land Bioresources

    Get PDF
    This chapter aims to establish the key factors for technological optimization of biogenic calcium phosphate synthesis from marine and land resources. Three natural calcium sources—marble, seashell and bovine bone—were considered as raw materials. The proposed materials are suitable candidates for the synthesis of bone substitutes similar to the inorganic bone component. The synthesis processes were developed based on the investigations of thermal phenomena (TGA-DSC analysis) that can occur during thermal treatments. By this method, we were able to determine the optimum routes and temperatures for the complete dissociation of calcium carbonate as well as risk-free deproteinization of bovine bone. An exhaustive characterization, performed with modern and complementary techniques such as morphology (SEM), composition (EDS, XRF) and structure (FT-IR, XRD), is presented for each precursor. The final chemical composition of ceramic products can be modulated through a careful control of the key parameters involved in the conversion, in order to create long-term performant biphasic apatite biomaterials, with broad medical applicability. Identifying the suitable strategies for this modulation contributes to an appreciable advance in orthopedic tissue engineering

    Synthesis and characterization of jellified composites form bovine bone-derived hydroxyapatite and starch as precursors for robocasting

    Get PDF
    Hydroxyapatite–starch composites solidify rapidly via jellification, making them suitable candidates for robocasting. However, many aspects related to hydroxyapatite powder characteristics, hydroxyapatite–starch interaction, and composites composition and properties need to be aligned with robocasting requirements to achieve a notable improvement in the functionality of printed scaffolds intended for bone regeneration. This article presents a preliminary evaluation of hydroxyapatite–starch microcomposites. Thermal analysis of the starting powders was performed for predicting composites’ behavior during heat-induced densification. Also, morphology, mechanical properties, and hydroxyapatite–starch interaction were evaluated for the jellified composites and the porous bodies obtained after conventional sintering, for different starch additions, and for ceramic particle size distributions. The results indicate that starch could be used for hydroxyapatite consolidation in limited quantities, whereas the composites shall be processed under controlled temperature. Due to a different mechanical behavior induced by particle size and geometry, a wide particle size distribution of hydroxyapatite powder is recommended for further robocasting ink development

    Facile synthesis and characterization of hydroxyapatite particles for high value nanocomposites and biomaterials

    Get PDF
    Lately Hydroxyapatite has gained a lot of research interest and intense focus due to its structural as well as compositional similarity to the components of human bone mineral. The conversion of calcium-rich precursors to hydroxyapatite could lead to the development of a new sustainable alternative with a valuable environmental and socio-economically impact. Still, current approaches faces lots of challenges in terms of synthesis parameters compatible to a reproducible route for calcium phosphates (hydroxyapatite included) synthesis. The optimization of Rathje synthesis route and characterization of biogenic derived calcium phosphates from dolomitic marble and Mytilus galloprovincialis seashells, constitutes the main goals of this study. The synthesized materials were characterized using FTIR, SEM coupled with EDS, and X-ray diffraction at all synthesis stages. Precursors were also subjected to thermal analysis and differential scanning calorimetry for thermal transformations investigations and dissociation temperature setting. This study suggests that acid quantity and magnetic stirring are the key-factors for Ca/P molar ratio adjustment, hence for the amount of naturally-derived hydroxyapatite. This research also contributes to the development of new strategies for further optimization of the conversion procedure and removal of residual components

    Advanced Composite Biomaterials

    No full text
    “Biomaterials” is one of the most important fields of study in terms of its development in the 21st century [...

    Regulation and Certification of (Bio)Medical Engineers: A Case Study on Romania

    No full text
    This paper analyzes the Romanian biomedical engineering educational path and certification process in European and international contexts and emphasizes the existence of a deficient operationalization of this qualification and profession, arguing that the domestic shortcomings are both a consequence of an unquestioned process of adopting European and even international classification schemes, and of insufficiently developed national administrative capabilities to properly implement the aforementioned classification frameworks. The core part of the article investigates the current academic track of the biomedical engineering specialization and scrutinizes the classification of occupations at different jurisdictional levels. The conclusions of the study indicate that one of the possible solutions for improving this unsatisfying status quo comes from a better communication between the national and European levels, and by their pro-active involvement in the international attempts of reviewing and refining the existing frameworks. The article ends with several recommendations and policy proposals meant to strengthen the role of various profession-certifying European documents, as well as to alleviate the regulatory deficiencies that this specialization has at Romanian level, in order to maximize its potential in the labor market
    corecore