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ABSTRACT: Hydroxyapatite−starch composites solidify rap-
idly via jellification, making them suitable candidates for
robocasting. However, many aspects related to hydroxyapatite
powder characteristics, hydroxyapatite−starch interaction, and
composites composition and properties need to be aligned
with robocasting requirements to achieve a notable improve-
ment in the functionality of printed scaffolds intended for bone
regeneration. This article presents a preliminary evaluation of
hydroxyapatite−starch microcomposites. Thermal analysis of
the starting powders was performed for predicting composites’
behavior during heat-induced densification. Also, morphology,
mechanical properties, and hydroxyapatite−starch interaction
were evaluated for the jellified composites and the porous
bodies obtained after conventional sintering, for different starch additions, and for ceramic particle size distributions. The results
indicate that starch could be used for hydroxyapatite consolidation in limited quantities, whereas the composites shall be
processed under controlled temperature. Due to a different mechanical behavior induced by particle size and geometry, a wide
particle size distribution of hydroxyapatite powder is recommended for further robocasting ink development.

1. INTRODUCTION

Building ceramic scaffolds that provide a suitable environment
for bone regeneration faces significant challenges. Besides the
requirements related to materials and fabrication technologies,
a bone scaffold should ensure both adequate porosity (for bone
formation and vascularization) and mechanical strength
necessary during the initial phases of bone recovery.1,2 Various
materials are currently considered for scaffold fabrication.
Calcium phosphates such as hydroxyapatite (HA), α-tricalcium
phosphate (α-TCP), and β-tricalcium phosphate (β-TCP) are
often the materials of choice for bone scaffolds, given their
similarity with the mineral component of the bone.2

Calcium phosphate scaffolds can be fabricated through both
conventional1 or additive manufacturing methods.3 Robocast-
ing,4 an additive manufacturing method closely related with
“direct ink writing”,5 “direct write assembly”,6,7 and “(micro-
)robotic deposition”,8,9 has gained interest for fabrication of
bone scaffolds because it is able to provide a high mechanical

quality to the printed products while being adaptable for a wide
range of materials.10

Robocasting involves the extrusion (at low temperatures and
pressures) of an ink filament followed by fusion with the
previously extruded filaments (by means of superficial tension).
Because the quality of robocasted parts is mainly influenced by
the ink composition and properties, a suitable ink formulation
shall be homogeneous, adequate for extrusion through fine
nozzles, and able to rapidly solidify to self-sustain after
extrusion. On the one hand, precursor selection has a
significant impact in ink development: main criteria are related
to particle dimension, geometry, and size distribution of the
powders. Micrometric particle sizes (lower than the diameter of
robocasting nozzles) are required for preventing ink jamming
during extrusion. Also, particle geometry and size distribution
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shall enhance ink consolidation and prevent the formation of
air bubbles that may compromise ink’s mechanical stability after
extrusion.3,7,10,11 On the other hand, binder selection and
dosing contribute greatly to the preparation of a homogeneous
dispersion with a high ceramic content (which shall prevent
excessive shrinkage during drying and subsequent densifica-
tion). Rapid solidification (by coagulation, evaporation,
jellification, etc.) of the binder−powder mixture shall ensure
the self-sustaining ability of the ink.12 Moreover, biomedical
applications shall comply with additional requirements
regarding binder’s lack of toxicity and its complete and safe
degradation during manufacturing. Adequate levels of micro-
porosity shall also be ensured by the ink during robocasting of
bone scaffolds (whereas macroporosity shall be ensured by
scaffold design).
Water-based formulations with HA and/or β-TCP have

already been proposed as robocasting inks because they are
considered simple to prepare, low-priced, and nontoxic.
Preparation of water-based inks with calcium phosphates also
includes the addition of low amounts of polymers as
dispersants, viscosifiers, jellifying, and antifoaming agents.6,10,13

The current study aims to broaden the materials palette for
robocasting by proposing starch as a jellifying agent for water-
based formulations with hydroxyapatite. Starch is a natural
polymer found in vegetables such as potatoes, rice, and corn,
and was used in hydroxyapatite mainly as a pore-forming
agent,14,15 but various methods of ceramic consolidation based
on starch jellification were also proposed.16,17

As robocasting represents both a major opportunity and a
challenge for fabrication of ceramic components with stringent

design requirements, this study presents the initial evaluation of
HA−starch formulations in terms of morphology, mechanical
properties, and hydroxyapatite−starch structure. A testification
of the application of hydroxyapatite−starch formulations for
robocasting, which shall involve extensive material character-
ization, including rheological, biological, and additional
mechanical testing, will be covered in a future study.
Bovine bone-derived HA and food grade corn starch were

chosen as powder precursors due to their proven suitability for
biomedical applications.2,18 HA−starch samples were prepared
with water, without using other additives. Starch concentration
and HA particle size distribution were the main variables
evaluated in the study; valuable insights related to particle size
and geometry were also included. The investigation of
hydroxyapatite−starch formulations with different composi-
tions, which began with a thermal analysis of raw starch and
hydroxyapatite powders (derived from bovine bone), was
performed for predicting the materials’ behavior during heat-
induced densification. Next, composites based on HA and
various quantities of starch were evaluated in terms of
morphology, structure, and mechanical properties. Finally, full
densification of jellified composites was achieved by conven-
tional sintering, which also allowed starch removal and pore
formation; the thermal-treated materials were evaluated in
comparison with jellified ones (Figure 1).
Throughout the study, the as-prepared hydroxyapatite

powder is coded “HA a.p.” and initial corn starch powder is
described as “raw starch”. The jellified and thermal-treated
HA−starch samples are distinguished by the terms “jellified”

Figure 1. Graphical representation of preparation method for jellified HA−starch composites: (a) deproteinized bovine bone; (b) HA after bone
thermal treatment at 1000 °C; (c) pressed samples during thermal treatment; (d) specimens used for characterization; (e) representation of powders
sorts used for samples preparation; and (f) representation of HA−starch materials after pressing and thermal treatment.
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and “thermal-treated” followed by starch content (wt %): 0, 5,
10, 25, and 50%, respectively.

2. RESULTS AND DISCUSSION

2.1. Thermal Behavior of Powdered Precursors. Five
distinct domains of thermal transformations/decompositions
are identified by thermogravimetric analysis (TGA) during
heating in air (Figure 2). The first heating domain (denoted I),
from room temperature (RT) to 200 °C, shows a ∼10% weight
loss in raw starch and a ∼0.2% weight loss in the as-prepared
(a.p.) HA powder. The second heating domain (II), from 200
to ∼520 °C, shows a ∼0.34% weight loss in HA a.p. and a 3.8%
weight loss in raw starch. Thermal analysis of raw starch is
recorded up to 288 °C; above this temperature, the gas
accumulated during the heat-induced reactions leads to a
violent burst, so the differential scanning calorimetry (DSC)/
TGA data are not reliable. The third heating domain (III), from

520 to ∼740 °C, shows a 0.65% weight loss in HA a.p. The
fourth heating domain (IV), 740−1379 °C, shows a ∼2.5%
weight loss in HA a.p. The last domain (V), 1379−1500 °C,
shows a ∼0.23% weight loss in HA a.p.
The DSC data show different domains of exothermic and

endothermic transformations that accompany the thermal
decompositions (Figure 3 and Table 1). The first domain of
DSC (denoted I), selected from RT to 250 °C, contains a large
exothermic peak of HA a.p. and a strong endothermic peak of
starch, both of which cover transformations I and II observed
by the TGA. The second domain, 250−600 °C (II), contained
a weak and large exothermic peak of HA and three exothermic
peaks (a−c) given by the presence of starch in HA. The third
domain, 600−750 °C, includes a weak exothermic peak given
by HA. The fourth to sixth domains contain two weak (IV and
V) and one strong (VI) endothermic peaks that belong to HA.
The endothermic transformation of starch is assigned to

gelatinization19 and evaporation of excessive water, as seen in

Figure 2. TGA curves of HA a.p., raw starch, and HA−starch mixed powders. Starch content is expressed as weight percent.

Figure 3. DSC curves of HA a.p., raw starch, and HA−starch mixed powders. Starch content is expressed as weight percent.
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the TGA data (Figure 2). The thermal effects induced by starch
can be observed in the mixed HA−starch powders starting with
200 °C. The starch successively decomposes with temperature
(domains II−V, Figure 2).
HA undergoes a succession of thermal transformations/

decompositions (Figure 3 and Table 1), also accompanied by
weight loss. The weight loss at low temperatures is assigned to
evaporation of adsorbed water and hydroxyl groups on the
surface of HA.20,21 Thermal stability of HA in air atmosphere is
proved until up to ∼1200 °C.
2.2. Morphology Evolution during Preparation of

HA−Starch Samples. HA and starch powders morphologies
are comparatively represented in Figure 4. The raw starch
powder consists of spherical particles with smooth surfaces and
10−20 μm particle size. The HA a.p. has different
morphologies based on particle size distribution. The mixed
HA powder (Figure 4b), prepared from a mix of equal amounts
of four types of sorted powdersnamely 25 wt % particles
sized <20 μm + 25 wt % particles sized <50 μm + 25 wt %
particles sized <100 μm + 25 wt % particles sized <200 μm

consisted of particles similar with corresponding granulometric
sorts presented in Figure 4c−f. Particles are distributed
randomly, with smaller-sized particles filling in the interstices
between the larger ones. HA particles smaller than 100 μm
(Figure 4c−e) are preponderantly polyhedral (with few
elongated particles) with sharp edges and coarse surfaces.
The sorted powder, sized 100−200 μm (Figure 4f), consists

of polyhedral particles with rounded edges. The surface of the
larger particles is covered with agglomerations of small-sized
particles (<20 μm). HA particles surface has small-sized pores
that remain after the removal of bone organics during thermal
treatment,22 and some of the particles have cracks generated by
milling and sorting.
The morphologies of jellified composites and thermal-treated

bodies are presented comparatively in Figure 5 for different
starch concentrations and particle size distributions. The
control samples consisting of HA without starch are included
in the analysis for evaluation.
The jellified materials prepared with sorted HA powders

(100−200 μm) and different starch quantities (left column in
Figure 5) consisted of polyhedral ceramic particles well
represented within the consolidated bodies. The samples
contained pores with various shapes and dimensions. Addition
of starch in low concentrations (HA with 5 wt % starch) leads
to a better packing of the samples due to pores filling. In the
samples with starch additions higher than 10 wt %, the spherical
(darker) starch particles are unified in a polymeric network,
which encloses the HA particles.
Starch addition ensures a bimodal particle size distribution,

which contributes to porosity decrease and better consolidation
of the jellified body (first and third column in Figure 5); this
observation is supported by similar results, in which the starch
addition to HA leads to the preparation of cements with
compact morphologies and enhanced mechanical character-
istics.23 The use of mixed powders leads to an enhanced
packing of jellified bodies, their porosity being significantly
reduced compared with the samples prepared with sorted HA
(Figure 5, third vs first column from left to right).
Ceramic body consolidation is achieved mainly by starch

jellification. Starch jellifies in aqueous solutions, at 60−80 °C.
The process begins with the swelling of starch grains, whereas

Table 1. DSC Transformation Stages (as in Figure 3), Type,
Onset/Offset Temperatures of Transformation, and the
Weight Loss at the Offset Temperature for HA a.p., Raw
Starch, and HA−Starch Mixed Powders

DSC (heating in air)

stage type Tonset (°C) Toffset (°C) weight loss at Toffset (%)

Raw Starch
I endo 53.3 150.9 10

HA a.p.
I exo 76 348 0.4
II exo 362 594 0.8
III exo 602 747 1.2
IV endo 848 950 1.5
V endo 996 1114 2.1
VI endo 1189 1431 3.8

50% HA−50% Starch
a exo 304 384 13.3
b exo 401 427 14.9
c exo 433 519 18.2

Figure 4. Initial powders morphology: (a) raw starch; and HA a.p. with different particle sizes: (b) mixed HA (equal parts of sorts presented in (c)−
(f)); (c) <20 μm; (d) <50 μm; (e) <100 μm; and (f) <200 μm.
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their crystalline regions are damaged. These damaged regions
are then adsorbed at the ceramic particles surface; this enhances
the mechanical strength of the consolidated body.18,24 The
influence of starch addition upon the morphology is best
observed in the samples with higher starch concentrations (25−
50 wt %) in which the large ceramic particles are covered with
gel scales consisting of starch and small HA particles.
Thermal treatment leads to thermal degradation and removal

of starch and the formation of porous ceramic bodies consisting
of consolidated large particles covered with smaller particles.
The porosity corresponds to the shape and quantity of jellified
starch. In the sintered samples (second and fourth columns in
Figure 5), the size and shape of hydroxyapatite particles do not
suffer any significant modifications as a consequence of
sintering, thus confirming that sintering does not influence
the ceramic’s morphology.
The degradable starch filler is completely removed after the

thermal treatment is performed at 1200 °C. As a consequence

of thermal degradation, the spaces initially filled starch are
replaced by randomly distributed pores. The shape and
quantity of these pores correspond to the shape and quantity
of starch filler in the jellified samples (as noted in previous
studies25), so the samples that initially contained higher starch
quantities exhibit an increased porosity as compared with the
hydroxyapatite samples prepared without starch.

2.3. X-ray Diffraction (XRD). The XRD patterns of the HA
as-prepared (a.p.) powder and heat-treated HA−starch samples
are presented comparatively in Figure 6. For evaluation we have
also included in Figure 6 the pattern of the as-jellified 50%
HA−50% starch sample, as well as the diagrams of two control
samples: simple HA powder thermal-treated samples (i) in the
absence and (ii) in the presence of HA−starch.
The presence of starch can be highlighted by XRD only in

the case of 50% HA−50% starch jellified sample, as fade humps
in the 2θ ≈ 10−22° range (the corresponding highlighted
region in Figure 6 is presented enlarged in Figure 7). This is

Figure 5. Morphology of jellified and thermal-treated HA−starch composites prepared with sorted (100−200 μm) and mixed HA powders. Starch
content is expressed as weight percent on each scanning electron microscopy (SEM) micrograph.
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due to the reduced crystalline status (Figure 7) and low density
of starch, which translates into a lower diffracted intensity. For
lower starch contents, the signal is buried in the background
noise. From the comparison of the raw and jellified starch
powders (Figure 7), we can deduce that no modification at
long-range order occurs in the starch structure during the
jellification process.
After the thermal-treatment has been applied (i.e., 1200 °C/4

h in air) to the HA−starch, no significant structural
modifications can be detected by XRD, apart from the

appearance as a residual secondary phase of calcium oxide
(CaO) (Figure 6, starred peak). Both, the mean crystalline size
(∼250 nm) and lattice parameters (a = 9.419 Å; c = 6.882 Å) of
HA, were found to be fairly constant in the case of all of the
sintered blends. The content of CaO does not appear to be
influenced by the presence of starch (Figure 6); its amount,
estimated by Rietveld full-pattern structure refinement method,
is in the range 0.35−0.70 wt % for all of the samples.
Furthermore, the presence of CaO in similar concentration in
both simple HA powder batches(i) heat-treated in the
absence and (ii) presence of HA−starchstrengthens our
hypothesis. One can note that the ISO 13779 standards,26,27

which regulate the fabrication of implants, state that a content
of maximum 5 wt % of impurity phases (i.e., α-tricalcium
phosphate, β-tricalcium phosphate, tetracalcium phosphate,
and/or CaO) in HA materials is considered as acceptable for
clinical applications. Consequently, the composition of the
materials proposed in this study is situated significantly below
the limit imposed by the ISO 13779 standard.
The formation of the crystalline CaO phase during thermal

processing of HA can be considered rather rare. In literature,
three possible hydroxyapatite decomposition reactions have
been advanced (eq 1 (refs 28−31); eq 2 (refs 28−32); eq 3 (ref
33))

→ + +Ca (PO )(OH ) 2Ca (PO ) Ca P O H O10 4 2 3 4 2 4 2 9 2 (1)

→ + +Ca (PO )(OH ) 3Ca (PO ) CaO H O10 4 2 3 4 2 2 (2)

→ + +Ca (PO )(OH ) 10CaO 3P O H O10 4 2 2 5 2 (3)

The absence of tricalcium phosphate, either in crystalline
XRD (Figure 6) or amorphousFourier transform infrared
(FTIR) (Figure 9) forms, in the case of all of the thermal-
treated samples suggests eq 3 as partial decomposition route of
hydroxyapatite. Kim et al.33 associate this partial conversion of
HA into crystalline CaO to its severe dehydroxylation. This is
to be expected when performing a second sintering procedure,
as was the case of our studies. The absence of P2O5 as the
crystalline phase (Figure 6) can be explained by its low
sublimation temperature (∼300 °C).33 The binary CaO−P2O5
equilibrium phase diagram2,28,32,34 suggests that phases such as
CaO or P2O5 cannot easily emerge in the system at
temperatures lower than 1720 °C. However, our result is not
unprecedented, as previous studies have shown that CaO can
form even at 1000 °C in the case of HA materials with a Ca/P
molar ratios higher than the stoichiometric theoretical value
(i.e., 1.67).35,36

2.4. FTIR Spectroscopy Measurements. The FTIR
spectra of the as-jellified and thermal-treated HA−starch blends
are presented in Figures 8 and 9, respectively. For an easy
visualization of the IR spectra details, they are presented in the
fingerprint (Figures 8a and 9a) and functional groups (Figures
8b and 9b) separate wave numbers regions. The spectra of HA
a.p. and starch starting materials, as well as of a pure CaO
(Sigma-Aldrich) powder, are presented in Figures 8 and 9 for
comparison purposes.
Typical IR envelopes of hydroxyapatite37 have been recorded

by FTIR in the case of all HA−starch blends (Figure 8). All of
the characteristic vibration bands of hydroxyapatite have been
identified: libration (∼629 cm−1) and stretching modes (∼3570
cm−1) of hydroxyl structural groups and ν4 bending (∼560−
600 cm−1), ν1 symmetric stretching (∼962 cm−1), and ν3

Figure 6. Comparative XRD patterns of the simple HA powder, and
HA−starch blends, before and after their thermal treatment in air.

Figure 7. XRD pattern of unannealed 50% HA−50% starch blend
presented comparatively to the patterns of raw starch and jellified and
dried starch powders.
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asymmetric stretching (1000−1090 cm−1) modes of ortho-
phosphate groups.37−39

In the case of the blends, part of the starch IR bands are
overlapped by the more intense HA maxima, and thus
obscured. A complete assignment of both HA and starch
bands is given in Table 2. In the regions of lower HA
absorption (Figure 10a), the vibration bands of starch can be

easily depicted, having a similar intensity ratio and presenting
no wavelength shifts with respect to the raw powder (Figure 8):
out-of-phase bending of hydrogen-bonded OH− groups (709
cm−1), rocking of −CH2 groups (763 cm

−1), bending modes of
C−H bonds (857 cm−1), vibration in rings and bending of C−
O (929 cm−1), stretching vibrations of C−O−C and C−O−H
bonds (1050 cm−1), and bending (1652 cm−1) and stretching

Figure 8. Comparative FTIR spectra of the simple HA, CaO, and starch powders, and unannealed HA−starch blends, collected in the fingerprint (a)
and functional groups (b) regions.

Figure 9. Comparative FTIR spectra of the simple HA, and CaO powders, and thermal-treated HA−starch blends, collected in the fingerprint (a)
and functional groups (b) regions.
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(2500−3600 cm−1) of adsorbed water molecules.37,40−42 This
gives a first indication that the starch structure is not strongly
modified during the jellification process, and thus, supports the
XRD findings (Figure 7).
The higher the starch content in the materials, the more

prominent its bands are, and more significant is the level of
material hydration (Figure 8).
However, slight band shifts are signalled in the case of the

stretching vibrations of C−C bonds (from 1414 to 1418 cm−1)
and in-plane bending vibrations of −CH2 groups (from 1460 to
1456 cm−1) between pure starch and HA−starch blends
(Figure 8a). This is attributed to the superposition in this
specific region of the ν3 asymmetric stretching bands of
carbonate groups present in the structure of HA,37−39 which
results in the modification of the peaks profile. The presence of
carbonate groups in the structure of HA is supported also by
the shallow band positioned at ∼874 cm−1, in case of both HA
a.p. and HA−starch jellified blends, ascribed to the bending
vibrations of carbonate groups.37−39 Carbonatation is typical of
HA materials derived from animal bones.43,44

Further, insightful comparative FTIR measurements have
been performed on starch found in three forms: raw, jellified,
and jellified and dried at room temperature (Figure 11). Upon
jellification, the starch uptakes significant amount of water, as
demonstrated by the intensity increase of bands corresponding
to bending (1652 cm−1) and stretching vibrations of adsorbed
water molecules (2500−3600 cm−1). Apart from this, one can
notice modifications in the intensity ratio of symmetric
stretching of (C−H) bonds in benzene rings (2928 cm−1)
and asymmetric stretching of (−CH2) groups (2972 cm−1)

bands (Figure 11, inset). This suggests that slight perturbations
of these specific chemical environments occur.
The doubly split bands positioned in the 2800−3000 cm−1

region (Figures 8b and 9b), observed also in the case of simple
HA a.p. powder, are assigned to the various C−H stretching
vibrations determined by adventitious hydrocarbon contami-
nation of samples during handling and storing in ambient.
Their shape is modified only in the case of higher
concentrations of starch in the blends.
In the case of thermal-treated HA−starch blends (Figure 9),

one can notice the disappearance of all of the starch IR bands.

Table 2. FTIR Bands Assignment of Hydroxyapatite−Starch
Samples

position (cm−1) band assignment

564, 599 bending ν4 of (PO4)
3− groups37−39

629 libration of structural (OH)− groups37−39

709 out-of-phase bending of hydrogen bonded OH−

groups40−42

763 rocking of −CH2 groups
40−42

857 bending modes of C−H bonds40−42

874−876 bending ν2 of (CO3)
2− groups37−39

929−930 vibration modes in rings; bending of C−O40−42

957 bending of C−O−C, C−O−H; stretching of CO40−42

962 symmetric stretching ν1 of (PO4)
3− groups37−39

1018, 1087 asymmetric stretching ν3 of (PO4)
3− groups37−39

997, 1012,
1041, 1078,
1105, 1150,
1207, 1245

various stretching vibrations of C−O−C and C−O−H
bonds40−42

1381 in plane bending of −CH groups40−42

1414 stretching vibration of C−C bonds40−42

asymmetric stretching ν3 of (CO3)
2− groups37−39

1460 in plane bending of −CH2 groups
40−42

asymmetric stretching ν3 of (CO3)
2− groups37−39

1652 bending of water molecules37−39

2890−2901 symmetric stretching ν2 of C−H bonds in −CH2
groups40−42

2928 symmetric stretching of C−H bonds in benzene rings40−42

2972−2981 asymmetric stretching of −CH2
40−42

3570 stretching of structural (OH)− groups37−39

3642 stretching vibrations of (OH)− groups of surface Ca(OH)2
compounds49−51

2500−3600 stretching vibrations of O−H bonds in adsorbed water
molecules37−39

Figure 10. Zoomed FTIR regions of the wave numbers domains
highlighted in (a): Figure 8a; (b) Figure 9a; and (c) Figure 9a.
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Concurrently, the hydroxyapatite bands’ position and allure
(Figure 9a) are preserved with respect to the jellified blended
samples and HA a.p. control (Figure 8a). This points toward
the excellent capability of the chosen thermal route to eliminate
the starch from the scaffold bodies and conserve unaltered the
structure of the HA material. The carbonatation of HA, which
is known to elicit remarkable biological properties,39,45−48 has
been fairly well maintained (Figure 10b,c) after sintering. The
presence of C−H stretching vibrations due to adventitious

hydrocarbon contamination has been evidenced also in the case
of the thermal-treated samples (Figure 9b). Their intensity
varies as a function of the haphazard degree of contamination.
However, a new vibration band emerges at ∼3642 cm−1 in

the spectra of all of the sintered blends, which is characteristic
to the stretching vibrations of (OH)− groups of surface
Ca(OH)2 compounds.49−51 This is a consequence of the
hygroscopic nature of the CaO phase that is obtained as the
residual product during sintering (Figure 6). In contact with
ambient, the surface of the CaO regions adsorbs water
molecules and gets partially hydrolyzed.

2.5. Mechanical Properties. The load−stroke curves of
jellified and thermal-treated (Figure 12) HA−starch specimens
are presented in comparison with control samples (HA).
Compression testing is performed only for 0, 5, 10, and 25 wt
% starch concentrations. The HA samples with 50 wt % starch
collapse under their own weight shortly after thermal treatment.
Based on the ceramic particle size distribution and starch

concentration, the load−stroke curves have different slopes,
which suggest differences between load absorption and,
implicitly, specimens’ microstructure. The HA green body
(jellified0 wt % starch) has a typical brittle behavior, without
a plastic deformation. Material’s stiffness decreases with an
increase in starch concentration. The jellified specimens
prepared with sorted HA powders and 5−10 wt % starch
exhibit a linear segment on the load displacement curve, which
is explained by the pores compaction during compression. The

Figure 11. Comparative FTIR spectra of starch in raw, jellified, and
jellified and dried form. Inset: zoomed region of C−H stretching
bands wave numbers domain (2800−3100 cm−1).

Figure 12. Load−stroke curves for jellified and thermal-treated samples prepared with HA and starch. Starch content is expressed as weight percent
on each curve.
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jellified 25 wt % starch specimens exhibited a plastic/malleable
behavior, with significant shortening of ∼1.4 mm.
Because the different particle size distribution leads to

different packing configuration, the specimens prepared with
mixed HA powders exhibit a higher strength due to particle
arrangement, which increases the surface that may absorb
mechanical loads. A decrease in ultimate strength is observed
when the specimens with sorted HA powders are tested (41 vs
60 Nthe ultimate strength of specimens prepared with mixed
powders).
Thermal treatment induces a significant improvement in the

mechanical properties of all of the tested specimens. Similar to
jellified composites, the thermal-treated samples (ceramics from
which starch is removed by thermal degradation) exhibit
superior mechanical properties when prepared with mixed HA
powders. An additional decrease in mechanical characteristics of
the thermal-treated materials with an increase in starch
concentration is also observed.
The compressive strength of jellified specimens (Figure 13a)

decreases with an increase in starch concentration. A minor
influence of HA particle size distribution is also observed, the
specimens prepared with sorted powders (100−200 μm)
having a slightly lower compression strength as compared to
the ones prepared with mixed powders. This influence is due
mainly to the better compaction and decreased porosity of
jellified samples prepared with mixed HA powders.
Thermal treatment increases the compressive strength of the

samples (Figure 13b). Maximum results are obtained for the
specimen prepared with mixed HA powders without starch
addition, which exhibit compressive strengths similar to cortical
bone (170−200 MPa52). Significant differences are observed
both due to starch concentration and particle size distribution.
Because starch is removed after thermal treatment, the
compressive strength of the specimens is attributed to the
ceramic body densified by sintering.
Higher starch concentrations are equivalent to higher

quantities of removed materials, which contributes to the
decrease in compressive strength. However, this decrease is not
significant for specimens prepared with sorted HA powders
(100−200 μm) because all of the specimens exhibit a rather
low compressive strength10−20 MPa. Higher strength
values, which significantly decrease with increase in starch
concentration, are observed for the specimens prepared with
mixed powders: the compressive strength decreases from 100
MPa for 5 wt % starch to 10 MPa for 25 wt % starch. After the
thermal treatment, the spaces initially filled with starch are free,
so the mechanical strength of thermal-treated bodies is ensured

through particle junctions. Because the 100−200 μm particles
geometry involves a large number of sharp edges (Figure 1f),
the mechanical strength is ensured primarily through pointlike
junctions, leading to overall poor mechanical properties that are
not suitable for bone reconstruction.

3. CONCLUSIONS

Incorporation of starch as a consolidation and porogen agent in
hydroxyapatite allowed the preparation of materials with
suitable composition for clinical applications (materials’
suitability for medical applications still needs to be confirmed
by in vitro evaluations).
The jellification of HA−starch materials occurred without

significant structural modifications of the components.
However, successful use of the rapid solidification abilities of
starch is strictly dependent of the paste temperature during
extrusion because starch jellification occurs in a limited
temperature range (60−80 °C).
After the thermal treatment, starch was degraded and

removed, leading to consolidated hydroxyapatite products
with different levels of porosity corresponding to the quantity
of incorporated starch and the HA particle size distribution
(sorted or mixed powders). Starch incorporation was possible
up to 25 wt % in the ceramic mixture; the samples prepared
with higher concentrations collapsed immediately after the
thermal treatment.
Because the mechanical testing of heat-treated samples

prepared with sorted HA indicated poor mechanical properties
for bone scaffolds, for next stages of robocasting ink
development, the use of mixed powders with different particle
sizes is recommended, which will ensure a homogeneous
distribution of ceramic particles in the jellified samples.
However, the compression strength of robocasted parts is
expected to be significantly lower due to reduced surface of
filaments and the net scaffold density, further influenced by the
micro- and macroporosity.

4. EXPERIMENTAL SECTION

4.1. Samples Preparation. 4.1.1. HA and Starch
Powders. HA was prepared by thermal processing of bovine
bone according to a previously described protocol.22,53 HA
powder was obtained by milling the calcined bone in a
planetary mill with agate bowl and balls54 and sorting the
powders with standardized granulometric sieves.
Two HA powder batches were used in the experiments: (i)

sorted powderwith 100−200 μm particle size; and (ii) mixed

Figure 13. Compressive strength of (a) jellified and (b) thermal-treated HA and HA−starch samples. Starch content is expressed as weight percent
for each sample.
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powderprepared by mixing equal parts of powders with
particles sizes <20, 20−40, 40−100, and 100−200 μm.
Each type of HA powder (sorted and mixed) was

homogenized with 0−50 wt % food grade corn starch powder
in the as-received state. Each batch of HA−starch powder was
homogenized for 15 min using a tumbler mixer.
4.1.2. Jellified HA−Starch Samples. The HA−starch

powders were homogenized with water in water/powder ratio
of 1/4. Starch jellification was induced by heating the solutions
at 70 ± 2 °C with continuous stirring. The jellified samples
were formed by cold isostatic pressing at 25 MPa. Jellified
samples were allowed to dry in atmospheric air for 240 h before
testing.
4.1.3. Thermal-Treated HA−Starch Samples. The cylin-

drical jellified samples with different HA particle size
distribution and different starch content were sintered in an
electrical furnace in air atmosphere at 1200 °C for 4 h. The
sintered bodies were stored at ambient conditions until testing.
For morphological and structural characterization, HA and

starch powders were analyzed in their initial state. The jellified
and thermal-treated HA−starch cylindrical samples were
carefully fractured for analyzing the inner surfaces. For
mechanical testing, jellified and heat-treated HA−starch
specimens were machined to obtain smooth cylindrical samples
(n = 5), with a final diameter of 10.0 ± 0.2 mm and a final
height of 10.0 ± 2.1 mm.
4.2. Characterization. Thermal analyses of the as-

prepared/as-received and mixed powders of HA and starch
were performed with a DSC/TGA SDTQ600 equipment in the
20−1500 °C range. Experiments were performed in synthetic
air, using alumina crucibles, and samples of ∼20 mg. The gas
flow rate was 25 mL/min, and the heating rate was 10 °C/min.
Morphological characterization of the precursor powders,

jellified, and thermal-treated ceramic bodies with different
starch additions was performed by scanning electron
microscopy (SEM) using a Philips ESEM 30 equipment in
the low-vacuum mode at 0.7 mbar pressure. The samples were
imaged without any coating or preparation.
The crystalline status of the materials was investigated with a

Bruker D8 Advance X-ray difractometer, with Cu Kα (λ =
1.5418 Å) radiation, using a high efficiency linear detector of
Lynx Eye type. The films were scanned in the angular range of
2θ = 9−50°, with a step size of 0.02° and 2 s acquisition time
per step.
Fourier transform infrared (FTIR) spectroscopy was used for

analyzing the functional groups present in the samples. The
analyses were performed with a PerkinElmer BX Spectrum
spectrometer, in attenuated total reflection mode using a Pike-
MIRacle diamond head of 1.8 mm diameter. The spectra were
recorded in the range 530−4000 cm−1 at a resolution of 4 cm−1,
with a total of 128 scans per experiment.
Compression testing was performed with a Walter+Bai

LSB300 universal testing machine with a 300 kN load cell. The
machine cross head speed was set to 1 mm/min with data
acquisition at 0.05 s.
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