5,020 research outputs found

    Nanovoid nucleation by vacancy aggregation and vacancy-cluster coarsening in high-purity metallic single crystals

    Get PDF
    A numerical model to estimate critical times required for nanovoid nucleation in high-purity aluminum single crystals subjected to shock loading is presented. We regard a nanovoid to be nucleated when it attains a size sufficient for subsequent growth by dislocation-mediated plasticity. Nucleation is assumed to proceed by means of diffusion-mediated vacancy aggregation and subsequent vacancy cluster coarsening. Nucleation times are computed by a combination of lattice kinetic Monte Carlo simulations and simple estimates of nanovoid cavitation pressures and vacancy concentrations. The domain of validity of the model is established by considering rate-limiting physical processes and theoretical strength limits. The computed nucleation times are compared to experiments suggesting that vacancy aggregation and cluster coarsening are feasible mechanisms of nanovoid nucleation in a specific subdomain of the pressure-strain rate-temperature space

    Factors determining spawning success in Penaeus monodon Fabricius

    Get PDF
    Spawning success in relation to the size of spawner, clumping of eggs, percentage of spawning and frequency of spawning was studied in Penaeus monodon collected off Tamil Nadu, India. The results indicated positive correlation between the size of spawner and the fecundity and hatching percentage, but not the start of hatching. Hatching characteristics were influenced by clumping of eggs or abortive spawning; the greater the clumping, the longer the time taken for hatching, resulting in a lower hatching percentage. The start of hatching time increased when the frequency of spawning increased. Lower hatching rate was observed as the frequency of spawning increased

    Non-Gaussian Correlations in the McLerran-Venugopalan Model

    Get PDF
    We argue that the statistical weight function W[rho] appearing in the McLerran-Venugopalan model of a large nucleus is intrinsically non-Gaussian, even if we neglect quantum corrections. Based on the picture where the nucleus of radius R consists of a collection of color-neutral nucleons, each of radius a<<R, we show that to leading order in alpha_s and a/R only the Gaussian part of W[rho] enters into the final expression for the gluon number density. Thus, the existing results in the literature which assume a Gaussian weight remain valid.Comment: 21 pages with 4 figures (revtex

    Shadowing of gluons in perturbative QCD: A comparison of different models

    Get PDF
    We investigate the different perturbative QCD-based models for nuclear shadowing of gluons. We show that in the kinematic region appropriate to RHIC experiment, all models give similar estimates for the magnitude of gluon shadowing. At scales relevant to LHC, there is a sizable difference between predictions of the different models.Comment: 11 pages, 4 figure

    Focus Section Book Reviews

    Get PDF

    Speech and language therapy versus placebo or no intervention for speech problems in Parkinson's disease

    Get PDF
    Parkinson's disease patients commonly suffer from speech and vocal problems including dysarthric speech, reduced loudness and loss of articulation. These symptoms increase in frequency and intensity with progression of the disease). Speech and language therapy (SLT) aims to improve the intelligibility of speech with behavioural treatment techniques or instrumental aids

    Chiral dynamics and the growth of the nucleon's gluonic transverse size at small x

    Full text link
    We study the distribution of gluons in transverse space in the nucleon at moderately small x (~10^{-2}). At large transverse distances (impact parameters) the gluon density is generated by the 'pion cloud' of the nucleon, and can be calculated in terms of the gluon density in the pion. We investigate the large-distance behavior in two different approaches to chiral dynamics: i) phenomenological soft-pion exchange, ii) the large-N_c picture of the nucleon as a classical soliton of the pion field, which corresponds to degenerate N and Delta states. The large-distance contributions from the 'pion cloud' cause a \~20% increase in the overall transverse size of the nucleon if x drops significantly below M_pi/M_N. This is in qualitative agreement with the observed increase of the slope of the t-dependence of the J/psi photoproduction cross section at HERA compared to fixed-target energies. We argue that the glue in the pion cloud could be probed directly in hard electroproduction processes accompanied by 'pion knockout', gamma^* + N -> gamma (or rho, J/psi) + pi + N', where the transverse momentum of the emitted pion is large while that of the outgoing nucleon is restricted to values of order M_pi.Comment: 20 pages, revtex4, 10 eps figure

    Testing Identifiable Kernel P Systems Using an X-machine Approach

    Get PDF
    This paper presents a testing approach for kernel P systems (kP systems), based on the X-machine testing framework and the concept of cover automaton. The testing methodology ensures that the implementation conforms the speci cations, under certain conditions, such as the identi ably concept in the context of kernel P systems

    Prompt photons at RHIC

    Get PDF
    We calculate the inclusive cross section for prompt photon production in heavy-ion collisions at RHIC energies (s=130\sqrt{s}=130 GeV and s=200\sqrt{s}=200 GeV) in the central rapidity region including next-to-leading order, O(αemαs2)O(\alpha_{em}\alpha_s^2), radiative corrections, initial state nuclear shadowing and parton energy loss effects. We show that there is a significant suppression of the nuclear cross section, up to ∌30\sim 30% at s=200\sqrt{s}=200 GeV, due to shadowing and medium induced parton energy loss effects. We find that the next-to-leading order contributions are large and have a strong ptp_t dependence.Comment: 9 pages, 5 figures, expanded discussion of the K facto
    • 

    corecore