28 research outputs found

    Serotonin and Noradrenaline Reuptake Inhibitors Improve Micturition Control in Mice

    Get PDF
    Poor micturition control may cause profound distress, because proper voiding is mandatory for an active social life. Micturition results from the subtle interplay of central and peripheral components. It involves the coordination of autonomic and neuromuscular activity at the brainstem level, under the executive control of the prefrontal cortex. We tested the hypothe- sis that administration of molecules acting as reuptake inhibitors of serotonin, noradrenaline or both may exert a strong effect on the control of urine release, in a mouse model of overac- tive bladder. Mice were injected with cyclophosphamide (40 mg/kg), to increase micturition acts. Mice were then given one of four molecules: the serotonin reuptake inhibitor imipra- mine, its metabolite desipramine that acts on noradrenaline reuptake, the serotonin and nor- adrenaline reuptake inhibitor duloxetine or its active metabolite 4-hydroxy-duloxetine. Cyclophosphamide increased urine release without inducing overt toxicity or inflammation, except for increase in urothelium thickness. All the antidepressants were able to decrease the cyclophosphamide effects, as apparent from longer latency to the first micturition act, decreased number of urine spots and volume of released urine. These results suggest that serotonin and noradrenaline reuptake inhibitors exert a strong and effective modulatory ef- fect on the control of urine release and prompt to additional studies on their central effects on brain areas involved in the social and behavioral control of micturition

    A Novel Anti-Inflammatory Role of Omega-3 PUFAs in Prevention and Treatment of Atherosclerosis and Vascular Cognitive Impairment and Dementia

    No full text
    Atherosclerosis is an inflammatory chronic disease affecting arterial vessels and leading to vascular diseases, such as stroke and myocardial infarction. The relationship between atherosclerosis and risk of neurodegeneration has been established, in particular with vascular cognitive impairment and dementia (VCID). Systemic atherosclerosis increases the risk of VCID by inducing cerebral infarction, or through systemic or local inflammatory factors that underlie both atherosclerosis and cognition. Omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) are involved in inflammatory processes, but with opposite roles. Specifically, omega-3 PUFAs exert anti-inflammatory properties by competing with omega-6 PUFAs and displacing arachidonic acid in membrane phospholipids, decreasing the production of pro-inflammatory eicosanoids. Experimental studies and some clinical trials have demonstrated that omega-3 PUFA supplementation may reduce the risk of different phenotypes of atherosclerosis and cardiovascular disease. This review describes the link between atherosclerosis, VCID and inflammation, as well as how omega-3 PUFA supplementation may be useful to prevent and treat inflammatory-related diseases
    corecore