6 research outputs found

    An in vivo humanized model to study homing and sequestration of Plasmodium falciparum transmission stages in the bone marrow

    Get PDF
    IntroductionRecent evidence suggests that the bone marrow (BM) plays a key role in the diffusion of P. falciparum malaria by providing a “niche” for the maturation of the parasite gametocytes, responsible for human-to-mosquito transmission. Suitable humanized in vivo models to study the mechanisms of the interplay between the parasite and the human BM components are still missing.MethodsWe report a novel experimental system based on the infusion of immature P. falciparum gametocytes into immunocompromised mice carrying chimeric ectopic ossicles whose stromal and bone compartments derive from human osteoprogenitor cells.ResultsWe demonstrate that immature gametocytes home within minutes to the ossicles and reach the extravascular regions, where they are retained in contact with different human BM stromal cell types.DiscussionOur model represents a powerful tool to study BM function and the interplay essential for parasite transmission in P. falciparum malaria and can be extended to study other infections in which the human BM plays a role

    Dissection of the human bone marrow environment as a privileged niche for Plasmodium falciparum gametocyte development

    No full text
    Plasmodium falciparum gametocytes develop in the human host in 10-12 days and only mature stage V can be found in the peripheral circulation. Observations from histological studies of a systematic organ survey in pediatric cases of fatal malaria (1) and from an analysis of bone marrow samples from anemic children infected by P. falciparum (2) revealed that immature gametocytes accumulate in the human bone marrow and that they are readily observed in the extravascular sites of this organ, altogether putting the human bone marrow under the spotlight as a privileged niche for gametocyte maturation and for having a key role in human-to-mosquito transmission of the malaria parasites. The mechanism(s) driving gametocyte sequestration in the human bone marrow and which parasite sexual stage is involved in homing are unclear. As in vitro systems recapitulating the complexity of human bone marrow are presently missing, a Bone Marrow Humanized Mouse (BMHM) model based on osteoprogenitor cell transplantation has been established (3) and recently refined (4) to reproduce a microenvironment for marrow structural development and for suitable for hematopoiesis. P. falciparum transgenic lines producing fluorescent gametocytes, have been used in the BMHM model to investigate gametocyte-BM interactions obtaining preliminary results on parasite (i) vascular or extravascular distribution, (ii) sequestration timing, (iii) stage(s) involved

    Identification and preliminary characterization of Plasmodium falciparum proteins secreted upon gamete formation

    No full text
    Malaria long-term elimination depends on parasite transmission control. Plasmodium sexual stage maturation in the mosquito, including egress from the host erythrocyte, is one of the prime targets for transmission-blocking interventions. This work aims to identify candidate molecules potentially involved in gamete emergence from the host erythrocyte, as novel transmission blocking targets. We analyzed by quantitative mass spectrometry the proteins released/secreted by purified Plasmodium falciparum gametocytes upon induction of gametogenesis. The proteome obtained showed a good overlap (74%) with the one previously characterized in similar conditions from gametocytes of the rodent malaria parasite P. berghei. Four candidates were selected based on comparative analysis of their abundance values in released vs total gametocyte proteome. We also characterized the P. falciparum orthologue of the microgamete surface protein (MiGS), a marker of male gametocyte secretory vesicles in murine models of malaria. The findings of this study reveal that all the selected candidate proteins are expressed in both genders and localize to vesicle-like structures that respond to gametogenesis stimuli. This result, together with the fact that the selected proteins are released during gamete emergence in both Plasmodium species, makes them interesting candidates for future functional studies to investigate their potential role in the gametogenesis process

    Impedance-based Rapid Diagnostic Tool for Single Malaria Parasite Detection

    No full text
    : This paper presents a custom, low-cost electronic system specifically designed for rapid and quantitative detection of the malaria parasite in a blood sample. The system exploits the paramagnetic properties of malaria-infected red blood cells (iRBCs) for their magnetophoretic capture on the surface of a silicon chip. A lattice of nickel magnetic micro-concentrators embedded in a silicon substrate concentrates the iRBCs above coplanar gold microelectrodes separated by 3 μm for their detection through an impedance measurement. The sensor is designed for a differential operation to remove the large contribution given by the blood sample. The electronic readout automatically balances the sensor before each experiment and reaches a resolution of 15 ppm in the impedance measurement at 1 MHz allowing a limit of detection of 40 parasite/μl with a capture time of 10 minutes. For better reliability of the results, four sensors are acquired during the same experiment. We demonstrate that the realized platform can also detect a single infected cell in real experimental conditions, measuring human blood infected by Plasmodium falciparum malaria specie

    Risk of Guillain-Barr\ue9 syndrome after 2010-2011 influenza vaccination

    No full text
    Influenza vaccination has been implicated in Guillain Barr\ue9 Syndrome (GBS) although the evidence for this link is controversial. A case-control study was conducted between October 2010 and May 2011 in seven Italian Regions to explore the relation between influenza vaccination and GBS. The study included 176 GBS incident cases aged 6518 years from 86 neurological centers. Controls were selected among patients admitted for acute conditions to the Emergency Department of the same hospital as cases. Each control was matched to a case by sex, age, Region and admission date. Two different analyses were conducted: a matched case-control analysis and a self-controlled case series analysis (SCCS). Case-control analysis included 140 cases matched to 308 controls. The adjusted matched odds ratio (OR) for GBS occurrence within 6 weeks after influenza vaccination was 3.8 (95 % CI: 1.3, 10.5). A much stronger association with gastrointestinal infections (OR = 23.8; 95 % CI 7.3, 77.6) and influenza-like illness or upper respiratory tract infections (OR = 11.5; 95 % CI 5.6, 23.5) was highlighted. The SCCS analysis included all 176 GBS cases. Influenza vaccination was associated with GBS, with a relative risk of 2.1 (95 % CI 1.1, 3.9). According to these results the attributable risk in adults ranges from two to five GBS cases per 1,000,000 vaccinations
    corecore