6 research outputs found

    GINSENG, GREEN TEA OR FIBRATE: valid options for nonalcoholic steatohepatitis prevention?

    No full text
    Objectives Panax ginseng, Camellia sinensis and bezafibrate were compared for their lipid-lowering, antioxidant and anti-inflammatory properties as potential agents to prevent nonalcoholic fatty liver disease and its progression to nonalcoholic steatohepatitis. Methods Fifty Wistar rats were randomized into five groups: G1 (feed with standard diet); G2 (feed with high-fat diet with 58% of energy from fat); G3 (high-fat diet + standardized Panax ginseng extract at 100 mg/kg/day); G4 (high-fat diet + standardized Camellia sinensis extract at 100 mg/kg/day); and G5 (high-fat diet + bezafibrate at 100 mg/kg/day), given by gavage. The animals were sacrificed eight weeks later and blood was collected for glucose, insulin, cholesterol, triglycerides, AST, ALT, alkaline phosphatase and gamma-glutamyl transferase determinations. The score system for nonalcoholic fatty liver disease was used to analyse the liver samples. Results and conclusions High-fat diet resulted in a significant increase in animal body weight, biochemical changes and enzymatic elevations. Steatosis, inflammation and hepatocellular ballooning scores were significant high in this group. The biochemical and histological variables were statistically similar in the bezafibrate group and control group. Treatment with Panax ginseng extract prevented obesity and histological features of nonalcoholic steatohepatitis (steatosis and inflammation) compared to high-fat diet. Camellia sinensis showed a less effective biochemical response, with small reduction in steatosis and inflammation but lower ballooning scores

    Immunohistochemistry pattern of hepatic inflammatory and insulin resistance markers in experimental model of nonalcoholic steatohepatitis

    No full text
    Introduction:The pathophysiology of nonalcoholic steatohepatitis (NAS) includes, basically, insulin resistance, inflammation and oxidative stress. Thus, a study of immunostaining for liver insulin, adiponectin, tumor necrosis factor alpha (TNF-α), and inducible nitric oxide synthase (iNOS) receptors was conducted.Objective:To expand the knowledge about the pathophysiological and molecular mechanisms underlying the experimental model of steatohepatitis in rats fed a high-fat diet.Method:Twenty Wistar rats were divided into two groups: G1 (control, fed a standard diet), and G2 (fed a high-fat diet containing 58% of energy derived from fat, 18% from protein and 24% from carbohydrate). After eight weeks the animals were sacrificed. Blood glucose, insulin, total cholesterol, high-density lipoprotein (HDL), the very low-density lipoproteins (VLDL), triglycerides, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and gamma-glutamyl transferase (GGT) were determined. The liver tissue was submitted to histopathological analysis, using a NAS score. In immunohistochemistry, we studied the expression of the insulin receptor, adiponectin, TNF-α and iNOS by tissue microarray method.Results and conclusion:There was marked cytoplasmic immunostaining for TNF-α and iNOS mediators in the group on a fat diet. Regarding insulin and adiponectin molecular markers, a reduction of cytoplasmic immunoreactivity of these antigens was observed in the group on a fat diet, reflecting, respectively, the state of hepatocellular inflammation (steatohepatitis) and insulin resistance in this experimental model of fat liver disease

    Metabolic syndrome and risk factors for non-alcoholic fatty liver disease

    No full text
    CONTEXT: Non-alcoholic fatty liver disease (NAFLD), hepatic manifestation of metabolic syndrome, has been considered the most common liver disease nowadays, which is also the most frequent cause of elevated transaminases and cryptogenic cirrhosis. The greatest input of fatty acids into the liver and consequent increased beta-oxidation contribute to the formation of free radicals, release of inflammatory cytokines and varying degrees of hepatocytic aggression, whose histological expression may vary from steatosis (HS) to non-alcoholic steatohepatitis (NASH). The differentiation of these forms is required by the potential risk of progression to cirrhosis and development of hepatocellular carcinoma. OBJECTIVE: To review the literature about the major risk factors for NAFLD in the context of metabolic syndrome, focusing on underlying mechanisms and prevention. METHOD: PubMed, MEDLINE and SciELO data basis analysis was performed to identify studies describing the link between risk factors for metabolic syndrome and NAFLD. A combination of descriptors was used, non-alcoholic fatty liver disease, non-alcoholic steatohepatitis, metabolic syndrome and risk factors. At the end, 96 clinical and experimental studies, cohorts, meta-analysis and systematic reviews of great impact and scientific relevance to the topic, were selected. RESULTS: The final analysis of all these data, pointed out the central obesity, type 2 diabetes, dyslipidemia and hypertension as the best risk factors related to NAFLD. However, other factors were highlighted, such as gender differences, ethnicity, genetic factors and the role of innate immunity system. How these additional factors may be involved in the installation, progression and disease prognosis is discussed. CONCLUSION: Risk factors for NAFLD in the context of metabolic syndrome expands the prospects to 1) recognize patients with metabolic syndrome at high risk for NAFLD, 2) elucidate pathways common to other co-morbidities, 3) determine risk factors associated with a worse prognosis, 4) develop therapeutic strategies with goal of reducing risk factors, 5) apply acquired knowledge in public health policies focusing on preventive strategies
    corecore