3 research outputs found

    High-Performance Adhesives Resulting from Spontaneous Formation of Nanogels within Miniemulsion Particles

    No full text
    Molecular structure plays a crucial role in determining the final properties of pressure-sensitive adhesives. Here, we demonstrate that the molecular structure of polyurethane/(meth)­acrylic hybrids synthesized by miniemulsion photopolymerization changes during storage of the dispersion at room temperature because of the spontaneous formation of nanogels by the assembly of polymer chains within the polymer particles. Analysis of the nanogel structure by asymmetric-flow field-flow fractionation allows identification of the molecular structure that provides the unusual combination of high tack adhesion and excellent shear resistance at high temperature [maximum value of the shear-adhesion failure temperature (SAFT) test, >210 °C]

    Encapsulation of Clay within Polymer Particles in a High-Solids Content Aqueous Dispersion

    No full text
    By using a two-step polymerization process, it was possible to encapsulate clay platelets within polymer particles dispersed in water. First, seed polymer particles with chemically bonded clay were obtained by batch miniemulsion polymerization. Then, the clay was buried within the particles by the addition of neat monomer in a second step. The final stable dispersions can have a solids content of up to 50 wt %. Transmission electron microscopy images clearly show the presence of clay platelets inside the polymer colloids, although they are not totally exfoliated. The obtained nanocomposites showed an increase in both the storage modulus in the rubbery state and the water resistance as the clay content increases. The approach presented here might be useful for encapsulating other high-aspect ratio nanofillers

    From Polymer Latexes to Multifunctional Liquid Marbles

    No full text
    A simple method to prepare multifunctional liquid marbles and dry water with magnetic, color, and fluorescent properties is presented. Multifunctional liquid marbles were prepared by encapsulation of water droplets using flocculated polymer latexes. First, the emulsion polymerization reaction of polystyrene and poly­(benzyl methacrylate) was carried out using cheap and commercially available cationic surfactants. Subsequently, flocculation of the latex was provoked by an anion-exchange reaction of the cationic surfactant by the addition of lithium bis­(trifluoromethanesulfonyl)­imide salt. The flocculated polymer latex was filtered and dried, leading to very hydrophobic micronanoparticulated powders. These powders showed a great ability to stabilize the air/water interface. Stable liquid marbles were obtained by rolling water droplets onto the hydrophobic powders previously prepared. The use of very small polystyrene nanoparticles led us to the preparation of very stable and the biggest known liquid marbles up to 2.5 mL of water. Furthermore, the introduction of fluorescent comonomer dyes into the polymer powders allowed us to obtain new morphological images and new knowledge about the structure of liquid marbles by confocal microscopy. Furthermore, the introduction of magnetic nanoparticles into the polymer latex led to magnetic responsive liquid marbles, where the iron oxide nanoparticles are protected within a polymer. Altogether this method represents an accessible and general platform for the preparation of multifunctional liquid marbles and dry water, which may contribute to extending of their actual range of applications
    corecore