20 research outputs found

    A multiscale Galerkin approach for a class of nonlinear coupled reaction–diffusion systems in complex media

    Get PDF
    AbstractA Galerkin approach for a class of multiscale reaction–diffusion systems with nonlinear coupling between the microscopic and macroscopic variables is presented. This type of models are obtained e.g. by upscaling of processes in chemical engineering (particularly in catalysis), biochemistry, or geochemistry. Exploiting the special structure of the models, the functions spaces used for the approximation of the solution are chosen as tensor products of spaces on the macroscopic domain and on the standard cell associated to the microstructure. Uniform estimates for the finite dimensional approximations are proven. Based on these estimates, the convergence of the approximating sequence is shown. This approach can be used as a basis for the numerical computation of the solution

    The boundary behavior of a composite material

    Get PDF
    In this paper, we study how solutions to elliptic problems with periodically oscillating coefficients behave in the neighborhood of the boundary of a domain. We extend the results known for flat boundaries to domains with curved boundaries in the case of a layered medium. This is done by generalizing the notion of boundary layer and by defining boundary correctors which lead to an approximation of order ε in the energy norm
    corecore