18 research outputs found
Antiarrhythmic and electrophysiologic effects of flecainide on acutely induced atrial fibrillation in healthy horses
BACKGROUND: Only few pharmacologic compounds have been validated for treatment of atrial fibrillation (AF) in horses. Studies investigating the utility and safety of flecainide to treat AF in horses have produced conflicting results, and the antiarrhythmic mechanisms of flecainide are not fully understood. OBJECTIVES: To study the potential of flecainide to terminate acutely induced AF of short duration (≥15 minutes), to examine flecainide‐induced changes in AF duration and AF vulnerability, and to investigate the in vivo effects of flecainide on right atrial effective refractory period, AF cycle length, and ventricular depolarization and repolarization. ANIMALS: Nine Standardbred horses. Eight received flecainide, 3 were used as time‐matched controls, 2 of which also received flecainide. METHODS: Prospective study. The antiarrhythmic and electrophysiologic effects of flecainide were based on 5 parameters: ability to terminate acute pacing‐induced AF (≥15 minutes), and drug‐induced changes in atrial effective refractory period, AF duration, AF vulnerability, and ventricular depolarization and repolarization times. Parameters were assessed at baseline and after flecainide by programmed electrical stimulation methods. RESULTS: Flecainide terminated all acutely induced AF episodes (n = 7); (AF duration, 21 ± 5 minutes) and significantly decreased the AF duration, but neither altered atrial effective refractory period nor AF vulnerability significantly. Ventricular repolarization time was prolonged between 8 and 20 minutes after initiation of flecainide infusion, but no ventricular arrhythmias were detected. CONCLUSIONS AND CLINICAL IMPORTANCE: Flecainide had clear antiarrhythmic properties in terminating acute pacing‐induced AF, but showed no protective properties against immediate reinduction of AF. Flecainide caused temporary prolongation in the ventricular repolarization, which may be a proarrhythmic effect
Mammals show faster recovery from capture and tagging in human-disturbed landscapes
Wildlife tagging provides critical insights into animal movement ecology, physiology, and behavior amid global ecosystem changes. However, the stress induced by capture, handling, and tagging can impact post-release locomotion and activity and, consequently, the interpretation of study results. Here, we analyze post-tagging effects on 1585 individuals of 42 terrestrial mammal species using collar-collected GPS and accelerometer data. Species-specific displacements and overall dynamic body acceleration, as a proxy for activity, were assessed over 20 days post-release to quantify disturbance intensity, recovery duration, and speed. Differences were evaluated, considering species-specific traits and the human footprint of the study region. Over 70% of the analyzed species exhibited significant behavioral changes following collaring events. Herbivores traveled farther with variable activity reactions, while omnivores and carnivores were initially less active and mobile. Recovery duration proved brief, with alterations diminishing within 4–7 tracking days for most species. Herbivores, particularly males, showed quicker displacement recovery (4 days) but slower activity recovery (7 days). Individuals in high human footprint areas displayed faster recovery, indicating adaptation to human disturbance. Our findings emphasize the necessity of extending tracking periods beyond 1 week and particular caution in remote study areas or herbivore-focused research, specifically in smaller mammals
Structure of the R3/I5 Chimeric Relaxin Peptide, a Selective GPCR135 and GPCR142 Agonist*
The human relaxin family comprises seven peptide hormones with various
biological functions mediated through interactions with G-protein-coupled
receptors. Interestingly, among the hitherto characterized receptors there is
no absolute selectivity toward their primary ligand. The most striking example
of this is the relaxin family ancestor, relaxin-3, which is an agonist for
three of the four currently known relaxin receptors: GPCR135, GPCR142, and
LGR7. Relaxin-3 and its endogenous receptor GPCR135 are both expressed
predominantly in the brain and have been linked to regulation of stress and
feeding. However, to fully understand the role of relaxin-3 in neurological
signaling, the development of selective GPCR135 agonists and antagonists for
in vivo studies is crucial. Recent reports have demonstrated that
such selective ligands can be achieved by making chimeric peptides comprising
the relaxin-3 B-chain combined with the INSL5 A-chain. To obtain structural
insights into the consequences of combining A- and B-chains from different
relaxins we have determined the NMR solution structure of a human
relaxin-3/INSL5 chimeric peptide. The structure reveals that the INSL5 A-chain
adopts a conformation similar to the relaxin-3 A-chain, and thus has the
ability to structurally support a native-like conformation of the relaxin-3
B-chain. These findings suggest that the decrease in activity at the LGR7
receptor seen for this peptide is a result of the removal of a secondary LGR7
binding site present in the relaxin-3 A-chain, rather than conformational
changes in the primary B-chain receptor binding site
Effect of flecainide on atrial fibrillatory rate in a large animal model with induced atrial fibrillation
Background: Atrial fibrillatory cycle length has been considered one of the indices of atrial electrical remodelling during atrial fibrillation (AF), which can be assessed from surface ECG by computer-assisted calculation of atrial fibrillatory rate (AFR). Horses have been suggested as a bona fide model for AF studies since horses too, develop lone AF, however data on AF characteristics in horses are extremely sparse and non-invasive characterization of AF complexity using surface ECG processing has not been reported. Aim: The aim was to study characteristics of induced AF and its modification by flecainide. Methods: The study group consisted on 3 horses with spontaneous persistent AF and 13 with pace-induced AF. Seven horses were treated with saline (control) and eight with flecainide (2 mg/kg). ECGs were analysed using spatiotemporal cancellation of QRST complexes and calculation of AFR from the residual atrial signal. Results: At AF onset, AFR was 295±52 fibrillations per minute (fpm) in the horses with induced AF treated with flecainide, 269±36 fpm in the control group (ns), and 364±26 fpm in the horses with spontaneous persistent AF (P<0.05 compared to the control group). Flecainide caused a decrease in AFR in all animals and restored sinus rhythm in the animals with induced AF. In the control animals, AFR increased from 269±36 fpm to a plateau of 313±14 fpm before decreasing to 288±28 fpm during the last 10% of the AF episodes preceding spontaneous conversion (P<0.05). Conclusion: AFR in horses with induced AF resembles AFR in humans with paroxysmal AF. Flecainide caused a rapid decrease in AFR in all horses, further supporting the method to be a non-invasive technique to study the effect of antiarrhythmic compounds
The A-chain of human relaxin family peptides has distinct roles in the binding and activation of the different relaxin family peptide receptors
The relaxin peptides are a family of hormones that share a structural fold characterized by two chains, A and B, that are cross-braced by three disulfide bonds. Relaxins signal through two different classes of G-protein-coupled receptors (GPCRs), leucine-rich repeat-containing GPCRs LGR7 and LGR8 together with GPCR135 and GPCR142, now referred to as the relaxin family peptide (RXFP) receptors 1–4, respectively. Although key binding residues have been identified in the B-chain of the relaxin peptides, the role of the A-chain in their activity is currently unknown. A recent study showed that INSL3 can be truncated at the N terminus of its A-chain by up to 9 residues without affecting the binding affinity to its receptor RXFP2 while becoming a high affinity antagonist. This suggests that the N terminus of the INSL3 A-chain contains residues essential for RXFP2 activation. In this study, we have synthesized A-chain truncated human relaxin-2 and -3 (H2 and H3) relaxin peptides, characterized their structure by both CD and NMR spectroscopy, and tested their binding and cAMP activities on RXFP1, RXFP2, and RXFP3. In stark contrast to INSL3, A-chain-truncated H2 relaxin peptides lost RXFP1 and RXFP2 binding affinity and concurrently cAMP-stimulatory activity. H3 relaxin A-chain-truncated peptides displayed similar properties on RXFP1, highlighting a similar binding mechanism for H2 and H3 relaxin. In contrast, A-chain-truncated H3 relaxin peptides showed identical activity on RXFP3, highlighting that the B-chain is the sole determinant of the H3 relaxin-RXFP3 interaction. Our results provide new insights into the action of relaxins and demonstrate that the role of the A-chain for relaxin activity is both peptide- and receptor-dependent