4 research outputs found

    Mesoscale Simulation of Laser Powder Bed Fusion with an Increased Layer Thickness for AlSi10Mg Alloy

    No full text
    Low performance is considered one of the main drawbacks of laser powder bed fusion (LPBF) technology. In the present work, the effect of the AlSi10Mg powder layer thickness on the laser melting process was investigated to improve the LPBF building rate. A high-fidelity simulation of the melt pool formation was performed for different thicknesses of the powder bed using the Kintech Simulation Software for Additive Manufacturing (KiSSAM, version cd8e01d) developed by the authors. The powder bed after the recoating operation was obtained by the discrete element method. The laser energy deposition on the powder particles and the substrate was simulated by ray tracing. For the validation of the model, an experimental analysis of single tracks was performed on two types of substrates. The first substrate was manufactured directly with LPBF technology, while the second was cast. The simulation was carried out for various combinations of process parameters, predominantly with a high energy input, which provided a sufficient remelting depth. The calculations revealed the unstable keyhole mode appearance associated with the low absorptivity of the aluminum alloy at a scanning speed of 300 mm/s for all levels of the laser power (325–375 W). The results allowed formulating the criteria for the lack of fusion emerging during LPBF with an increased layer thickness. This work is expected to provide a scientific basis for the analysis of the maximum layer thickness via simulation to increase the performance of the technology

    Magnetocaloric and thermomagnetic properties of Ni2.18Mn0.82Ga Heusler alloy in high magnetic fields up to 140 kOe

    No full text
    Measurements of the adiabatic temperature change (ΔT) and the specific heat transfer (ΔQ) of Ni 2.18Mn0.82Ga Heusler alloy were taken in order to quantify the direct giant magnetocaloric effect of the alloy when it is in the vicinity of magneto-structural phase transition (PT) from paramagnetic austenite to ferromagnetic martensite, and their results are presented. A new vacuum calorimeter was used to simultaneously measure ΔT and ΔQ of magnetocaloric materials with a Bitter coil magnet in fields of up to H = 140 kOe. Other thermomagnetic properties of this alloy were investigated using standard differential scanning calorimetry and PPMS equipment. The maximal values of magnetocaloric effect in H = 140 kOe were found to be ΔT = 8.4 K at initial temperature 340 K and ΔQ = 4900 J/kg at 343 K. Using this direct method, we show that the alloy indeed demonstrates the largest value of ΔQ as compared with previously published results for direct measurements of magnetocaloric materials, even though at 140 kOe the magnetic field-induced magnetostructural PT is still not complete.Web of Science11716art. no. 16390
    corecore