1 research outputs found

    Table1_Distribution of a novel CYP2C haplotype in Native American populations.DOCX

    No full text
    The CYP2C19 gene, located in the CYP2C cluster, encodes the major drug metabolism enzyme CYP2C19. This gene is highly polymorphic and no-function (CYP2C19*2 and CYP2C19*3), reduced function (CYP2C19*9) and increased function (CYP2C19*17) star alleles (haplotypes) are commonly used to predict CYP2C19 metabolic phenotypes. CYP2C19*17 and the genotype-predicted rapid (RM) and ultrarapid (UM) CYP2C19 metabolic phenotypes are absent or rare in several Native American populations. However, discordance between genotype-predicted and pharmacokinetically determined CYP2C19 phenotypes in Native American cohorts have been reported. Recently, a haplotype defined by rs2860840T and rs11188059G alleles in the CYP2C cluster has been shown to encode increased rate of metabolism of the CYP2C19 substrate escitalopram, to a similar extent as CYP2C19*17. We investigated the distribution of the CYP2C:TG haplotype and explored its potential impact on CYP2C19 metabolic activity in Native American populations. The study cohorts included individuals from the One Thousand Genomes Project AMR superpopulation (1 KG_AMR), the Human Genome Diversity Project (HGDP), and from indigenous populations living in Brazil (Kaingang and Guarani). The frequency range of the CYP2C:TG haplotype in the study cohorts, 0.469 to 0.598, is considerably higher than in all 1 KG superpopulations (range: 0.014—to 0.340). We suggest that the high frequency of the CYP2C:TG haplotype might contribute to the reported discordance between CYP2C19-predicted and pharmacokinetically verified CYP2C19 metabolic phenotypes in Native American cohorts. However, functional studies involving genotypic correlations with pharmacokinetic parameters are warranted to ascertain the importance of the CYP2C:TG haplotype.</p
    corecore