32 research outputs found

    Divergent Modulation of Neuronal Differentiation by Caspase-2 and -9

    Get PDF
    Human Ntera2/cl.D1 (NT2) cells treated with retinoic acid (RA) differentiate towards a well characterized neuronal phenotype sharing many features with human fetal neurons. In view of the emerging role of caspases in murine stem cell/neural precursor differentiation, caspases activity was evaluated during RA differentiation. Caspase-2, -3 and -9 activity was transiently and selectively increased in differentiating and non-apoptotic NT2-cells. SiRNA-mediated selective silencing of either caspase-2 (si-Casp2) or -9 (si-Casp9) was implemented in order to dissect the role of distinct caspases. The RA-induced expression of neuronal markers, i.e. neural cell adhesion molecule (NCAM), microtubule associated protein-2 (MAP2) and tyrosine hydroxylase (TH) mRNAs and proteins, was decreased in si-Casp9, but markedly increased in si-Casp2 cells. During RA-induced NT2 differentiation, the class III histone deacetylase Sirt1, a putative caspase substrate implicated in the regulation of the proneural bHLH MASH1 gene expression, was cleaved to a ∼100 kDa fragment. Sirt1 cleavage was markedly reduced in si-Casp9 cells, even though caspase-3 was normally activated, but was not affected (still cleaved) in si-Casp2 cells, despite a marked reduction of caspase-3 activity. The expression of MASH1 mRNA was higher and occurred earlier in si-Casp2 cells, while was reduced at early time points during differentiation in si-Casp9 cells. Thus, caspase-2 and -9 may perform opposite functions during RA-induced NT2 neuronal differentiation. While caspase-9 activation is relevant for proper neuronal differentiation, likely through the fine tuning of Sirt1 function, caspase-2 activation appears to hinder the RA-induced neuronal differentiation of NT2 cells

    Innovazione farmacologica e pratica clinica

    No full text

    Is insulin a neuromodulator?

    No full text

    Different effects of serotonin antagonists on 3H-mianserin and 3H-ketanserin recognition sites

    No full text
    In minces prepared from the frontal cortex of rats treated with ketanserin (10 mg/kg i.p.) or mianserin (5 mg/kg i.p.) twice daily for 21 days, the Vmax of the adenylate cyclase stimulated by NE (100 microM) is attenuated, suggesting that ketanserin and mianserin share with a number of antidepressants the ability to attenuate the adenylate cyclase stimulation by NE. Ketanserin, given with the above mentioned dose schedule for 7 consecutive days, reduced the Bmax of 5HT2 recognition sites but failed to change either the Bmax or the apparent Kd of H-mianserin binding. A significant decrease in the Bmax of 5HT2 binding sites is elicited also by a single injection of mianserin (1). This drug also down-regulates its own binding when given twice daily for 3 weeks. From this and other information (2,3), it is concluded that ketanserin and mianserin bind to distinct recognition sites. The possibility that 5HT2 and mianserin recognition sites are functionally related and that serotonergic synapses are modulated by multiple chemical signals might be considered

    Differences in the regulatory adaptation of the 5HT recognition sites labelled by 3H-mianserin or 3H-ketanserin

    No full text
    In crude synaptic membranes prepared from rat brain the sites occupied by 3H-spiroperidol that are displaced by microM concentrations of serotonin (5HT) have been termed 5HT2 receptors (Peroutka and Snyder, 1980). Since the 3H-spiroperidol displaced by 5HT is also displaced very effectively (IC50 in the nM range) by ketanserin and mianserin it was suggested that spiroperidol, mianserin and ketanserin are labelling 5HT2 receptors. Data are presented showing that the 3H-ketanserin and 3H-mianserin bound to crude synaptic membrane in the presence of a H1 receptor blocker are not labelling the same recognition site. Hence from this standpoint the recognition site marked by 3H-mianserin and 3H-ketanserin is not identical. The possibility that allosteric effects are operative in some of these ligand displacements should be entertained

    Down-regulation of beta-adrenergic receptors following repeated injections of desmethylimipramine: permissive role of serotonergic axons

    No full text
    The injection of desmethylimipramine (DMI) twice daily for 3 weeks reduced the density of beta-adrenergic receptor recognition sites located in crude synaptic membranes prepared from the cortex and hippocampus and attenuated the stimulation of the membrane-bound adenylate cyclase by isoproterenol. Both actions were abolished if prior to treatment with desmethylimipramine the serotonergic axons were destroyed by an intraventricular injection of 5,7-dihydroxytryptamine. These results show that the down-regulation of beta-adrenergic receptors elicited by repeated injections of desmethylimipramine occurs only if the serotonergic axons are intact

    Beneficial and Detrimental Effects of Antiretroviral Therapy on HIV-Associated Immunosenescence

    No full text
    Since the introduction of highly active antiretroviral therapy more than 2 decades ago, HIV-related deaths have dramatically decreased and HIV infection has become a chronic disease. Due to the inability of antiretroviral drugs to eradicate the virus, treatment of HIV infection requires a systemic lifelong therapy. However, even when successfully treated, HIV patients still show increased incidence of age-associated co-morbidities compared with uninfected individuals. Virus- induced immunosenescence, a process characterized by a progressive decline of immune system function, contributes to the premature ageing observed in HIV patients. Although antiretroviral therapy has significantly improved both the quality and length of patient lives, the life expectancy of treated patients is still shorter compared with that of uninfected individuals. In particular, while antiretroviral therapy can contrast some features of HIV-associated immunosenescence, several anti-HIV agents may themselves contribute to other aspects of immune ageing. Moreover, older HIV patients tend to have a worse immunological response to the antiviral therapy. In this review we will examine the available evidence on the role of antiretroviral therapy in the control of the main features regulating immunosenescence

    Beneficial and Detrimental Effects of Antiretroviral Therapy on HIV-Associated Immunosenescence

    No full text
    Since the introduction of highly active antiretroviral therapy more than 2 decades ago, HIV-related deaths have dramatically decreased and HIV infection has become a chronic disease. Due to the inability of antiretroviral drugs to eradicate the virus, treatment of HIV infection requires a systemic lifelong therapy. However, even when successfully treated, HIV patients still show increased incidence of age-associated co-morbidities compared with uninfected individuals. Virus- induced immunosenescence, a process characterized by a progressive decline of immune system function, contributes to the premature ageing observed in HIV patients. Although antiretroviral therapy has significantly improved both the quality and length of patient lives, the life expectancy of treated patients is still shorter compared with that of uninfected individuals. In particular, while antiretroviral therapy can contrast some features of HIV-associated immunosenescence, several anti-HIV agents may themselves contribute to other aspects of immune ageing. Moreover, older HIV patients tend to have a worse immunological response to the antiviral therapy. In this review we will examine the available evidence on the role of antiretroviral therapy in the control of the main features regulating immunosenescence
    corecore