124 research outputs found

    The Crab Nebula flaring activity

    Get PDF
    The discovery made by AGILE and Fermi of a short time scale flaring activity in the gamma-ray energy emission of the Crab Nebula is a puzzling and unexpected feature, challenging particle acceleration theory. In the present work we propose the shock-induced magnetic reconnection as a viable mechanism to explain the Crab flares. We postulate that the emitting region is located at ∼1015 cm from the central pulsar, well inside the termination shock, which is exactly the emitting region size as estimated by the overall duration of the phenomenon ∼1 day. We find that this location corresponds to the radial distance at which the shock-induced magnetic reconnection process is able to accelerate the electrons up to a Lorentz factor ∼109, as required by the spectral fit of the observed Crab flare spectrum. The main merit of the present analysis is to highlight the relation between the observational constraints to the flare emission and the radius at which the reconnection can trigger the required Lorentz factor. We also discuss different scenarios that can induce the reconnection. We conclude that the existence of a plasma instability affecting the wind itself as the Weibel instability is the privileged scenario in our framework. Keywords: Gamma rays, Theory – pulsars, Individual, Crab pulsar – radiation mechanisms, Non-therma

    Update on the GRB universal scaling EX,iso_{\rm{X,iso}}-Eγ,iso_{\rm{\gamma,iso}}-Epk_{\rm{pk}} with ten years of SwiftSwift data

    Get PDF
    From a comprehensive statistical analysis of SwiftSwift X-ray light-curves of gamma-ray bursts (GRBs) collected from December 2004 to the end of 2010, we found a three-parameter correlation between the isotropic energy emitted in the rest frame 1-104^4 keV energy band during the prompt emission (Eγ,iso_{\rm{\gamma,iso}}), the rest frame peak of the prompt emission energy spectrum (Epk_{\rm{pk}}), and the X-ray energy emitted in the rest frame 0.3-30 keV observed energy band (EX,iso_{\rm{X,iso}}), computed excluding the contribution of the flares. In this paper, we update this correlation with the data collected until June 2014, expanding the sample size with ∼\sim35% more objects, where the number of short GRBs doubled. With this larger sample we confirm the existence of a universal correlation that connects the prompt and afterglow properties of long and short GRBs. We show that this correlation does not depend on the X-ray light-curve morphology and that further analysis is necessary to firmly exclude possible biases derived by redshift measurements. In addition we discuss about the behavior of the peculiar objects as ultra-long GRBs and we propose the existence of an intermediate group between long and short GRBs. Interestingly, two GRBs with uncertain classification fall into this category. Finally, we discuss the physics underlying this correlation, in the contest of the efficiency of conversion of the prompt γ\gamma-ray emission energy into the kinetic energy of the afterglow, the photosferic model, and the cannonball model.Comment: 11 pages, 5 figures, accepted for publication in MNRA

    Can we constrain the aftermath of binary neutron star mergers with short gamma-ray bursts?

    Get PDF
    The joint observation of GW170817 and GRB170817A proved that binary neutron star (BNS) mergers are progenitors of short Gamma-ray Bursts (SGRB): this established a direct link between the still unsettled SGRB central engine and the outcome of BNS mergers, whose nature depends on the equation of state (EOS) and on the masses of the NSs. We propose a novel method to probe the central engine of SGRBs based on this link. We produce an extended catalog of BNS mergers by combining recent theoretically predicted BNS merger rate as a function of redshift and the NS mass distribution inferred from measurements of Galactic BNSs. We use this catalog to predict the number of BNS systems ending as magnetars (stable or Supramassive NS) or BHs (formed promptly or after the collapse of a hypermassive NS) for different EOSs, and we compare these outcomes with the observed rate of SGRBs. Despite the uncertainties mainly related to the poor knowledge of the SGRB jet structure, we find that for most EOSs the rate of magnetars produced after BNS mergers is sufficient to power all the SGRBs, while scenarios with only BHs as possible central engine seems to be disfavoured.Comment: Accepted for publication in MNRAS Letter

    Gamma-ray bursts and magnetars: Observational signatures and predictions

    Get PDF
    Newly-born millisecond magnetars are competing with black holes as source of the gamma-ray burst (GRB) power, mainly with their rotational energy reservoir. They may be formed both in the core-collapse of massive stars, and in the merger of neutron star or white dwarf binaries, or in the accretion-induced collapse of a white dwarf, being thus a plausible progenitor for long and short GRBs, respectively. In ten years of activity, Swift has provided compelling observational evidences supporting the magnetar central engine, as the presence of a plateau phase in the X-ray light curve, the extended emission in SGRBs and the precursor and flaring activity. We review the major observational evidences for the possible presence of a newly-born magnetar as the central engine for both long and short GRBs. We then discuss about the possibility that all GRBs are powered by magnetars, and we propose a unification scheme that accommodates both magnetars and black holes, connected to the different properties and energetics of GRBs. Since the central engine remains hidden from direct electromagnetic observations, we review the predictions for the GW emission from magnetars hosted from GRBs, and the observational perspectives with advanced interferometers

    GRB 980425, SN1998bw and the EMBH model

    Full text link
    The EMBH model, previously developed using GRB 991216 as a prototype, is here applied to GRB 980425. We fit the luminosity observed in the 40-700 keV, 2-26 keV and 2-10 keV bands by the BeppoSAX satellite. In addition we present a novel scenario in which the supernova SN1998bw is the outcome of an ``induced gravitational collapse'' triggered by GRB 980425, in agreement with the GRB-Supernova Time Sequence (GSTS) paradigm (Ruffini et al. 2001c). A further outcome of this astrophysically exceptional sequence of events is the formation of a young neutron star generated by the SN1998bw event. A coordinated observational activity is recommended to further enlighten the underlying scenario of this most unique astrophysical system.Comment: 10 pages, 3 figures, in the Proceedings of the 34th COSPAR scientific assembly, Elsevier. Fixed some typos in this new versio

    Synergies between the Cherenkov Telescope Array and THESEUS

    Get PDF
    The Cherenkov Telescope Array (CTA) is designed to be the next major observatory operating in the Very High Energy (VHE, ≳ 100 GeV) gamma-ray band. It will build on the imaging atmospheric Cherenkov technique but will go much further in terms of performance than current instruments. Its sensitivity at short timescales and the rapid repointing system will make CTA a perfect facility to observe the gamma-ray transient sky. In this respect, the synergies between CTA and other multi-wavelength and multi-messenger facilities are expected to further enhance CTA's scientific scope. Thanks to its characteristics, THESEUS will perform an unprecedented monitoring of the X-ray variable sky, detecting, localising, and identifying transients. It will provide external triggers and accurate location for the CTA follow-up of transients, and their broadband characterisation, playing a key role for CTA after the next decade

    Gamma-ray burst optical light-curve zoo: comparison with X-ray observations

    Full text link
    We present a comprehensive analysis of the optical and X-ray light curves (LCs) and spectral energy distributions (SEDs) of a large sample of gamma-ray burst (GRB) afterglows to investigate the relationship between the optical and X-ray emission after the prompt phase. We collected the optical data from the literature and determined the shapes of the optical LCs. Then, using previously presented X-ray data we modeled the optical/X-ray SEDs. We studied the SED parameter distributions and compared the optical and X-ray LC slopes and shapes. The optical and X-ray spectra become softer as a function of time while the gas-to-dust ratios of GRBs are higher than the values calculated for the Milky Way and the Large and Magellanic Clouds. For 20% of the GRBs the difference between the optical and X-ray slopes is consistent with 0 or 1=4 within the uncertainties (we did it not consider the steep decay phase), while in the remaining 80% the optical and X-ray afterglows show significantly different temporal behaviors. Interestingly, we find an indication that the onset of the forward shock in the optical LCs (initial peaks or shallow phases) could be linked to the presence of the X-ray flares. Indeed, when X-ray flares are present during the steep decay, the optical LC initial peak or end plateau occurs during the steep decay; if instead the X-ray flares are absent or occur during the plateau, the optical initial peak or end plateau takes place during the X-ray plateau. The forward-shock model cannot explain all features of the optical (e.g. bumps, late re-brightenings) and X-ray (e.g. flares, plateaus) LCs. However, the synchrotron model is a viable mechanism for GRBs at late times. In particular, we found a relationship between the presence of the X-ray flares and the shape of the optical LC that indicates a link between the prompt emission and the optical afterglow.Comment: 55 pages, 37 figures, accepted for publication in A&A (this version includes changes made at Proofs stage

    The SVOM mission

    Get PDF
    SVOM (Space-based multiband astronomical Variable Objects Monitor) is a sino-french mission that is dedicated to Gamma-Ray Burst (GRB) science, expected to be launched in mid 2023. The mission includes four space-based and three ground-based instruments that, working together, will discover GRBs and provide rapid multi-wavelength follow-up in order to obtain a complete coverage of the GRB emission over seven decades in energy, from the trigger up to the very late phases of the afterglow. Thanks to its characteristics, SVOM will play a crucial role in time-domain and multi-messenger astronomy
    • …
    corecore