16 research outputs found

    A Case-Study Plant for a Sustainable Redevelopment of Buildings Based on Storage and Reconversion of Hydrogen Generated by Using Solar Energy

    Get PDF
    In todays process of decarbonisation and transition to a green economy based on distributed and sustainable energy production, hydrogen is considered the most promising energy carrier, thanks to its multiple properties. It is clean, versatile and has a high combustion efficiency and more importantly, renewable energy could be used as a primary source for hydrogen production near the end use point, making full use of local energy potential. Nevertheless, the current cost of its technology still requires further research and development, necessary to obtain its rapid and effective launch onto the market. Moreover, hydrogen storage and distribution infrastructures, fundamental to make it usable and competitive, are currently lacking.In this framework, the paper analyses a photovoltaic (PV) system, equipped with hydrogen storage and reconversion subsystems. The technological plant is basically aimed to be easily integrated into buildings for their sustainable redevelopment. At this stage, the presented case study was designed to supply a part of electrical needs of the Mediterranea University of Reggio Calabria.In brief, starting from the PV generation of electricity, hydrogen is obtained through electrolytic production, which is stored and then reconverted into electricity by using fuel cells. The study clearly meets the main goals of the 2030 Agenda for sustainable development. Un caso studio di impianto per la riqualificazione sostenibile degli edifici basato sullo stoccaggio e sulla riconversione dell’idrogeno prodotto usando l’energia solareNell'odierno processo di decarbonizzazione e transizione verso un'economia verde basata sulla produzione di energia distribuita e sostenibile, l'idrogeno è considerato il vettore energetico più promettente, grazie alle sue molteplici proprietà: è pulito, versatile e ha un'alta efficienza di combustione. In particolare, l'energia rinnovabile potrebbe essere utilizzata come fonte primaria per la produzione di idrogeno vicino al punto di utilizzo finale, sfruttando appieno il potenziale energetico locale. Tuttavia, l'attuale costo della sua tecnologia richiede ancora ulteriori ricerche e sviluppi, necessari per ottenere la sua rapida ed efficace penetrazione nel mercato. Inoltre, al momento le infrastrutture di stoccaggio e distribuzione dell'idrogeno, fondamentali per renderlo utilizzabile e competitive, sono ancora lacunose.In questo scenario, il lavoro analizza un sistema fotovoltaico (PV), dotato di sottosistemi di stoccaggio e riconversione dell'idrogeno. L'impianto tecnologico è pensato per essere facilmente integrato negli edifici per una loro riqualificazione sostenibile; in questa fase, il caso di studio testato era finalizzato alla alimentazione di una parte delle utenze elettriche dell'Università Mediterranea di Reggio Calabria. In breve, a partire dalla generazione fotovoltaica di elettricità, l'idrogeno viene ottenuto attraverso la produzione elettrolitica, immagazzinato e poi riconvertito in elettricità utilizzando le celle a combustibile. Lo studio è chiaramente in linea con i principali obiettivi dell'Agenda 2030 per uno sviluppo sostenibile.In todays process of decarbonisation and transition to a green economy based on distributed and sustainable energy production, hydrogen is considered the most promising energy carrier, thanks to its multiple properties. It is clean, versatile and has a high combustion efficiency and more importantly, renewable energy could be used as a primary source for hydrogen production near the end use point, making full use of local energy potential. Nevertheless, the current cost of its technology still requires further research and development, necessary to obtain its rapid and effective launch onto the market. Moreover, hydrogen storage and distribution infrastructures, fundamental to make it usable and competitive, are currently lacking.In this framework, the paper analyses a photovoltaic (PV) system, equipped with hydrogen storage and reconversion subsystems. The technological plant is basically aimed to be easily integrated into buildings for their sustainable redevelopment. At this stage, the presented case study was designed to supply a part of electrical needs of the Mediterranea University of Reggio Calabria.In brief, starting from the PV generation of electricity, hydrogen is obtained through electrolytic production, which is stored and then reconverted into electricity by using fuel cells. The study clearly meets the main goals of the 2030 Agenda for sustainable development. Un caso studio di impianto per la riqualificazione sostenibile degli edifici basato sullo stoccaggio e sulla riconversione dell’idrogeno prodotto usando l’energia solareNell'odierno processo di decarbonizzazione e transizione verso un'economia verde basata sulla produzione di energia distribuita e sostenibile, l'idrogeno è considerato il vettore energetico più promettente, grazie alle sue molteplici proprietà: è pulito, versatile e ha un'alta efficienza di combustione. In particolare, l'energia rinnovabile potrebbe essere utilizzata come fonte primaria per la produzione di idrogeno vicino al punto di utilizzo finale, sfruttando appieno il potenziale energetico locale. Tuttavia, l'attuale costo della sua tecnologia richiede ancora ulteriori ricerche e sviluppi, necessari per ottenere la sua rapida ed efficace penetrazione nel mercato. Inoltre, al momento le infrastrutture di stoccaggio e distribuzione dell'idrogeno, fondamentali per renderlo utilizzabile e competitive, sono ancora lacunose.In questo scenario, il lavoro analizza un sistema fotovoltaico (PV), dotato di sottosistemi di stoccaggio e riconversione dell'idrogeno. L'impianto tecnologico è pensato per essere facilmente integrato negli edifici per una loro riqualificazione sostenibile; in questa fase, il caso di studio testato era finalizzato alla alimentazione di una parte delle utenze elettriche dell'Università Mediterranea di Reggio Calabria. In breve, a partire dalla generazione fotovoltaica di elettricità, l'idrogeno viene ottenuto attraverso la produzione elettrolitica, immagazzinato e poi riconvertito in elettricità utilizzando le celle a combustibile. Lo studio è chiaramente in linea con i principali obiettivi dell'Agenda 2030 per uno sviluppo sostenibile

    DISTRETTI ENERGETICI: UNO STUDIO SU UN QUARTIERE DI UNA CITTÀ DELL’ITALIA MERIDIONALE

    Get PDF
    Nowadays the energy transition, which implies the design of a new energy supply and distribution model based on RES, is an urgent course of action. Not only is it crucial to tackle climate change issues but it is also an opportunity to generate new technical, economic and social development possibilities. In this framework, the implementation of new structures of collective and collaborative economy, such as energy districts and communities, is encouraged by the European Union's development programs as a crucial strategy to mitigate both climate change crisis and economic inequalities as well as socio-environmental injustices. With a view to providing a contribution to the studies addressing the effectiveness of these new energy management structures, especially in Mediterranean climates, this work proposes an analysis focused on a neighborhood of a city located in the Southern Italy. The results showed that the implementation of RES in an energy district perspective, according to the feasibility granted by the neighborhood features, allowed the balance between energy productivity and needs to be reached

    ANALISI NON DISTRUTTIVE: MODELLAZIONE 3D MEDIANTE TERMOGRAFIA PER I BENI CULTURALI

    No full text
    Nowadays, unfortunately the decay’s state of a big number of Cultural Heritage artifacts, requires a restauration work to be kept in a good state maintaining their integrity and duration. However, minor preventive intervention is necessary to reduce the resources to be allocated to more economically demanding restauration activities, allowing their accessibility to the public. A non-destructive analysis plays a fundamental role to understand e identify a possible degradation state. Thermography analyses are central to determine the thermo-absorbing capacities of the constituent elements ‘artifact and the possible material’s changes or lesions’ presence, otherwise identifiable to the naked eye. This paper illustrates a methodology to create a 3D model by combining, through soft computing techniques and digital photogrammetry, the point clouds obtained from the processing of thermographic images and RGB; in this way it is possible to obtain a geometrically accurate model that also reports the thermographic values. This methodology is applied on concrete sample (in which the presence of cracks was already known). The goal is to experiment with a process that lets the use of thermal sensors alongside digital cameras in the photogrammetric field in order to obtain a product that allows to extrapolate the geometric and thermal information of the object of study

    Study of the Correlation among Luminous Properties of Smart Glazing for Adaptive Energy Saving Buildings

    No full text
    A smart window, such as electrochromic or thermochromic windows, may not be able to accomplish at the same time energy efficiency and visual comfort functions, since satisfying one criterium interferes with the other. This recalls to the important issue of establishing precise relationships among parameters affecting energy, glare control, and color rendering tasks and the influence on them of glazing material composition and preparation technique. With this aim, the luminous properties of a number of advanced glazings found in literature and of three home-made electrochromic devices differing by material composition and/or preparation technique are analyzed in this study. The investigation has involved the determination of the CIE (Commission International de l’Eclairage) Color Rendering Index (CIE CRI), the Correlated Color Temperature (CCT), and the luminous transmittance coefficient (τV) of the devices which are discussed with regard to their potential in absolving to energy and visual comfort tasks. Results lead to the main conclusion that the CIE CRI, CCT, and τV indexes are clearly linked by an exponential correlation. At low τV values (τV< 0.5), however, the correlation weakens and the variation of the CIE CRI and CCT indexes becomes entirely material dependent. The influence of preparation technique appears to be irrelevant since the color rendering indexes appear to be well correlated to τV over all the investigated τV range

    Effects of the SARS-CoV-2 Pandemic on CO<sub>2</sub> Emissions in the Port Areas of the Strait of Messina

    No full text
    The Strait of Messina is characterised by a significant ship flow, especially of ferries, between its two shores. The ferry services involve four harbours, located on the Sicilian and Calabrian shores. During the epidemic emergency related to the SARS-CoV-2 virus, due to the restrictions adopted to counteract the spread of the infection, a significant reduction in ferry activities and vehicle flow occurred. These circumstances made flow data, related to different actual scenarios, available and allowed the assessment of the environmental impact of the port area. Therefore, the port area became a noteworthy case study, suited to draw conclusions regarding possible future courses of action designed to curb greenhouse gas emissions in these types of settlements. In the study, in order to assess the effect of different levels of human activity on pollutant emissions, the total CO2 emissions from ferry activities in two successive years, 2019 before the spread of the virus and 2020 when the epidemic was at its peak, were evaluated and compared. The EMEP/EEA methodology was used and, as a result, an overall reduction of 13.2% in CO2eq yearly emission rates was observed, with the major reduction of 2784 tCO2eq due to maritime traffic

    Greenhouse Gas Balance in the City of Reggio Calabria and Assessment of the Effects of Measures of Emission Reduction and Absorption

    No full text
    Climate change and its ascertained attribution to anthropic activity need to be tackled with extreme urgency and must not be postponed. The need to reduce greenhouse gas emissions require a change in the energy paradigm, mainly affecting the construction and mobility sectors. Countries need to move towards climate neutrality with a widespread adoption of innovative models, systems, and technologies, reducing dependence on non-renewable sources and increasing energy efficiency. Measures to be adopted to achieve the prefixed decarbonization targets should involve, in addition to central governments, local communities. In this paper, in order to contribute to the definition of mitigation measures by the local administration, the balance of emissions and removal of greenhouse gases, assessed following the IPCC guidelines, for an Italian city (Reggio Calabria) on the date of 1 January 2020 is presented. Several hypotheses concerning reduction measures to be applied to the building and transport sectors, together with absorption interventions, have been developed and we have analyzed the effectiveness of each of them and their global effects on 1 January 2030. The proposed measures allow a reduction of 17% of total emissions, indicating that to reach carbon neutrality in 2050, more incisive and wide range interventions are required

    Insulating Building Components Made from a Mixture of Waste and Vegetal Materials: Thermal Characterization of Nine New Products

    No full text
    Nowadays, energy efficiency and sustainability are the fulcra of building policies. These policies promote the use of new technologies and materials that can reduce the primary energy involved and the environmental costs of construction, guarantying at the same time a high level of comfort for the building’s occupants. Synergy between previous construction techniques and the use of new materials should be pursued by employing materials with a low environmental impact and optimal thermal insulation properties. Within this framework, new materials derived from the agriculture sector, and waste or recycling products from the industrial/agricultural sectors have been studied. The aim of this paper is to contribute to this field by analysing the insulation properties of new environmentally friendly materials composited from waste or vegetal products for their applications within the construction sector. Measurements of the thermal conductivity of nine different samples are carried out, obtaining promising results suggesting that these products can be used as feasible alternatives to the materials traditionally used for construction and insulation. However, further analyses are certainly recommended, to assess the samples’ structural properties and the influence of pre-treatments on the samples

    Insulating building components made from a mixture of waste and vegetal materials: thermal characterization of nine new products

    Get PDF
    Nowadays, energy efficiency and sustainability are the fulcra of building policies. These policies promote the use of new technologies and materials that can reduce the primary energy involved and the environmental costs of construction, guarantying at the same time a high level of comfort for the building's occupants. Synergy between previous construction techniques and the use of new materials should be pursued by employing materials with a low environmental impact and optimal thermal insulation properties. Within this framework, new materials derived from the agriculture sector, and waste or recycling products from the industrial/agricultural sectors have been studied. The aim of this paper is to contribute to this field by analysing the insulation properties of new environmentally friendly materials composited from waste or vegetal products for their applications within the construction sector. Measurements of the thermal conductivity of nine different samples are carried out, obtaining promising results suggesting that these products can be used as feasible alternatives to the materials traditionally used for construction and insulation. However, further analyses are certainly recommended, to assess the samples' structural properties and the influence of pre-treatments on the samples

    Insulating Building Components Made from a Mixture of Waste and Vegetal Materials: Thermal Characterization of Nine New Products

    No full text
    Nowadays, energy efficiency and sustainability are the fulcra of building policies. These policies promote the use of new technologies and materials that can reduce the primary energy involved and the environmental costs of construction, guarantying at the same time a high level of comfort for the building&rsquo;s occupants. Synergy between previous construction techniques and the use of new materials should be pursued by employing materials with a low environmental impact and optimal thermal insulation properties. Within this framework, new materials derived from the agriculture sector, and waste or recycling products from the industrial/agricultural sectors have been studied. The aim of this paper is to contribute to this field by analysing the insulation properties of new environmentally friendly materials composited from waste or vegetal products for their applications within the construction sector. Measurements of the thermal conductivity of nine different samples are carried out, obtaining promising results suggesting that these products can be used as feasible alternatives to the materials traditionally used for construction and insulation. However, further analyses are certainly recommended, to assess the samples&rsquo; structural properties and the influence of pre-treatments on the samples

    Electric Load Influence on Performances of a Composite Plant for Hydrogen Production from RES and its Conversion in Electricity

    No full text
    The analysis here presented investigates the influence of electrical load on the operational performances of a plant for hydrogen production from solar energy and its conversion in electricity via a fuel cell. The plant is an actual one, currently under construction, in Reggio Calabria (Italy), at the site of the Mediterranean university campus; it is composed of a Renewable Energy Source (RES) section (photovoltaic panels), a hydrogen production section, and a fuel cell power section feeding the electrical energy demand of the load. Two different load configurations have been analysed and simulations have been carried out through HomerTM simulation code. Results allow interesting conclusions regarding the plant operation to be drawn. The study could have a remarkable role in supporting further research activities aimed at the assessment of the optimal configuration of this type of pioneering plants, designed for feeding electrical loads, possibly, in a self-sufficient way
    corecore