51 research outputs found

    Development of G-quadruplex Stabilizers as Anticancer Drug Therapy and Selective Agonists of the Human Oxytocin Receptor as a Therapeutic Tool for Neuropsychiatric Disorders

    Get PDF
    The principal aim of pharmacology in drug discovery is the characterization of drug activity by system-independent scales that allow prediction of drug activity in all cellular systems. This thesis concentrated in two drug targets: telomeres and GPCRs. Telomere biology is a validated anticancer drug target. G-protein-coupled receptors (GPCRs) recognize external ligands and transmit signals to cellular G-proteins (guanine-nucleotide-binding proteins) to elicit a response. These receptors are tractable for drug discovery because they are on the cell surface therefore drugs do not need to penetrate the cell to produce an effect [1]. In 2000, nearly half of all prescription drugs in the US were targeted towards GPCRs [2]. The projects in this dissertation will describe two different approaches to the successful identification of small-molecules that interact with their validated targets. The first project focused on the identification of new G-quadruplex stabilizers and their ability to inhibit human telomerase as an anticancer drug modality. The second project focused on the efforts made towards the identification of novel small molecules that selectively activate the human oxytocin receptor to regulate complex behaviors in animal models with therapeutic implications in various neuropsychiatric disorders

    HTS navigator: freely accessible cheminformatics software for analyzing high-throughput screening data

    Get PDF
    Summary: We report on the development of the high-throughput screening (HTS) Navigator software to analyze and visualize the results of HTS of chemical libraries. The HTS Navigator processes output files from different plate readers' formats, computes the overall HTS matrix, automatically detects hits and has different types of baseline navigation and correction features. The software incorporates advanced cheminformatics capabilities such as chemical structure storage and visualization, fast similarity search and chemical neighborhood analysis for retrieved hits. The software is freely available for academic laboratories

    Colloidal Aggregation Causes Inhibition of G Protein-Coupled Receptors

    Get PDF
    Colloidal aggregation is the dominant mechanism for artifactual inhibition of soluble proteins, and controls against it are now widely deployed. Conversely, investigating this mechanism for membrane-bound receptors has proven difficult. Here we investigate the activity of four well-characterized aggregators against three G protein-coupled receptors (GPCRs) recognizing peptide and protein ligands. Each of the aggregators was active at micromolar concentrations against the three GPCRs in cell-based assays. This activity could be attenuated by either centrifugation of the inhibitor stock solution or by addition of Tween-80 detergent. In the absence of agonist, the aggregators acted as inverse agonists, consistent with a direct receptor interaction. Meanwhile, several literature GPCR ligands that resemble aggregators themselves formed colloids, by both physical and enzymological tests. These observations suggest that some GPCRs may be artifactually antagonized by colloidal aggregates, an effect that merits the attention of investigators in this field

    The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Uses its C-Terminus to Regulate the A2B Adenosine Receptor

    Get PDF
    CFTR is an apical membrane anion channel that regulates fluid homeostasis in many organs including the airways, colon, pancreas and sweat glands. In cystic fibrosis, CFTR dysfunction causes significant morbidity/mortality. Whilst CFTR’s function as an ion channel has been well described, its ability to regulate other proteins is less understood. We have previously shown that plasma membrane CFTR increases the surface density of the adenosine 2B receptor (A2BR), but not of the β2 adrenergic receptor (β2AR), leading to an enhanced, adenosine-induced cAMP response in the presence of CFTR. In this study, we have found that the C-terminal PDZ-domain of both A2BR and CFTR were crucial for this interaction, and that replacing the C-terminus of A2BR with that of β2AR removed this CFTR-dependency. This observation extended to intact epithelia and disruption of the actin cytoskeleton prevented A2BR-induced but not β2AR-induced airway surface liquid (ASL) secretion. We also found that CFTR expression altered the organization of the actin cytoskeleton and PDZ-binding proteins in both HEK293T cells and in well-differentiated human bronchial epithelia. Furthermore, removal of CFTR’s PDZ binding motif (ΔTRL) prevented actin rearrangement, suggesting that CFTR insertion in the plasma membrane results in local reorganization of actin, PDZ binding proteins and certain GPCRs

    PRESTO-Tango as an open-source resource for interrogation of the druggable human GPCRome

    Get PDF
    G protein-coupled receptors (GPCRs) are essential mediators of cellular signaling and important targets of drug action. Of the approximately 350 non-olfactory human GPCRs, more than 100 are still considered “orphans” as their endogenous ligand(s) remain unknown. Here, we describe a unique open-source resource that provides the capacity to interrogate the druggable human GPCR-ome via a G protein-independent β-arrestin recruitment assay. We validate this unique platform at more than 120 non-orphan human GPCR targets, demonstrate its utility for discovering new ligands for orphan human GPCRs, and describe a method (PRESTO-TANGO; Parallel Receptor-ome Expression and Screening via Transcriptional Output - TANGO) for the simultaneous and parallel interrogation of the entire human GPCR-ome

    Rational Drug Design Leading to the Identification of a Potent 5-HT 2C Agonist Lacking 5-HT 2B Activity

    Get PDF
    The 5-HT2C receptor is an attractive drug target in the quest for new therapeutics to treat a variety of human disorders. We have previously undertaken a structural optimization campaign that has led to some potent and moderately selective 5-HT2C receptor agonists. After expanding our structure–function library, we were able to combine our data sets so as to allow the design of compounds of improved selectivity and potency. We disclose herein the structural optimization of our previously reported 5-HT2B/5-HT2C agonists, which has led to the identification of a highly selective 5-HT2C agonist, (+)-trans-[2-(2-cyclopropylmethoxyphenyl)cyclopropyl]methylamine hydrochloride, with an EC50 of 55 nM and no detectable agonism at the 5-HT2B receptor

    Conformation Guides Molecular Efficacy in Docking Screens of Activated β-2 Adrenergic G Protein Coupled Receptor

    Get PDF
    A prospective, large library virtual screen against an activated β2-adrenergic receptor (β2AR) structure returned potent agonists to the exclusion of inverse-agonists, providing the first complement to the previous virtual screening campaigns against inverse-agonist-bound G protein coupled receptor (GPCR) structures, which predicted only inverse-agonists. In addition, two hits recapitulated the signaling profile of the co-crystal ligand with respect to the G protein and arrestin mediated signaling. This functional fidelity has important implications in drug design, as the ability to predict ligands with predefined signaling properties is highly desirable. However, the agonist-bound state provides an uncertain template for modeling the activated conformation of other GPCRs, as a dopamine D2 receptor (DRD2) activated model templated on the activated β2AR structure returned few hits of only marginal potency

    Structure–Functional Selectivity Relationship Studies of β-Arrestin-Biased Dopamine D 2 Receptor Agonists

    Get PDF
    Functionally selective G protein-coupled receptor (GPCR) ligands, which differentially modulate canonical and non-canonical signaling, are extremely useful for elucidating key signal transduction pathways essential for both the therapeutic actions and side-effects of drugs. However, few such ligands have been created and very little purposeful attention has been devoted to studying what we term: ‘structure-functional selectivity relationships’ (SFSR). We recently disclosed the first β-arrestin-biased dopamine D2 receptor (D2R) agonists UNC9975 (44) and UNC9994 (36), which have robust in vivo antipsychotic drug-like activities. Here we report the first comprehensive SFSR studies focused on exploring four regions of the aripiprazole scaffold, which resulted in the discovery of these β-arrestin-biased D2R agonists. These studies provide a successful proof-of-concept for how functionally selective ligands can be discovered

    In Silico Molecular Comparisons of C. elegans and Mammalian Pharmacology Identify Distinct Targets That Regulate Feeding

    Get PDF
    Phenotypic screens can identify molecules that are at once penetrant and active on the integrated circuitry of a whole cell or organism. These advantages are offset by the need to identify the targets underlying the phenotypes. Additionally, logistical considerations limit screening for certain physiological and behavioral phenotypes to organisms such as zebrafish and C. elegans. This further raises the challenge of elucidating whether compound-target relationships found in model organisms are preserved in humans. To address these challenges we searched for compounds that affect feeding behavior in C. elegans and sought to identify their molecular mechanisms of action. Here, we applied predictive chemoinformatics to small molecules previously identified in a C. elegans phenotypic screen likely to be enriched for feeding regulatory compounds. Based on the predictions, 16 of these compounds were tested in vitro against 20 mammalian targets. Of these, nine were active, with affinities ranging from 9 nM to 10 µM. Four of these nine compounds were found to alter feeding. We then verified the in vitro findings in vivo through genetic knockdowns, the use of previously characterized compounds with high affinity for the four targets, and chemical genetic epistasis, which is the effect of combined chemical and genetic perturbations on a phenotype relative to that of each perturbation in isolation. Our findings reveal four previously unrecognized pathways that regulate feeding in C. elegans with strong parallels in mammals. Together, our study addresses three inherent challenges in phenotypic screening: the identification of the molecular targets from a phenotypic screen, the confirmation of the in vivo relevance of these targets, and the evolutionary conservation and relevance of these targets to their human orthologs

    Structure-based discovery of opioid analgesics with reduced side effects

    Get PDF
    Morphine is an alkaloid from the opium poppy used to treat pain. The potentially lethal side effects of morphine and related opioids—which include fatal respiratory depression—are thought to be mediated by μ-opioid-receptor (μOR) signalling through the β-arrestin pathway or by actions at other receptors. Conversely, G-protein μOR signalling is thought to confer analgesia. Here we computationally dock over 3 million molecules against the μOR structure and identify new scaffolds unrelated to known opioids. Structure-based optimization yields PZM21—a potent Gi activator with exceptional selectivity for μOR and minimal β-arrestin-2 recruitment. Unlike morphine, PZM21 is more efficacious for the affective component of analgesia versus the reflexive component and is devoid of both respiratory depression and morphine-like reinforcing activity in mice at equi-analgesic doses. PZM21 thus serves as both a probe to disentangle μOR signalling and a therapeutic lead that is devoid of many of the side effects of current opioids
    corecore