
DEVELOPMENT OF G-QUADRUPLEX STABILIZERS AS ANTICANCER DRUG 
THERAPY AND SELECTIVE AGONISTS OF THE HUMAN OXYTOCIN 
RECEPTOR AS A THERAPEUTIC TOOL FOR NEUROPSYCHIATRIC 

DISORDERS 
 
 
 
 
 

MARIA FLORENCIA SASSANO 
 
 
 

 
 
A dissertation submitted to the faculty of the University of North Carolina at Chapel 
Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in 
the School of Pharmacy (Medicinal Chemistry and Natural Products). 

 
 
 
 
 

Chapel Hill 
2009 

 
 
 
 
 

Approved by: 
 

Dr. Michael B. Jarstfer, Chair 
 

 Dr. Kenneth F. Bastow 
 
 Dr. Cort A. Pedersen 
 

                                                                    Dr. Bryan L. Roth 
 

                                                                       Dr. Qisheng Zhang 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

©2009 
Maria Florencia Sassano 
ALL RIGHTS RESERVED 

 ii



ABSTRACT 

MARIA FLORENCIA SASSANO: Development of g-quadruplex stabilizers as 
anticancer drug therapy and selective agonists of the human oxytocin receptor as a 

therapeutic tool for neuropsychiatric disorders 
(Under the direction of Dr. Michael B. Jarstfer) 

 

The principal aim of pharmacology in drug discovery is the characterization of 

drug activity by system-independent scales that allow prediction of drug activity in all 

cellular systems. This thesis concentrated in two drug targets: telomeres and 

GPCRs. Telomere biology is a validated anticancer drug target. G-protein-coupled 

receptors (GPCRs) recognize external ligands and transmit signals to cellular G-

proteins (guanine-nucleotide-binding proteins) to elicit a response. These receptors 

are tractable for drug discovery because they are on the cell surface therefore drugs 

do not need to penetrate the cell to produce an effect [1]. In 2000, nearly half of all 

prescription drugs in the US were targeted towards GPCRs [2].  

The projects in this dissertation will describe two different approaches to the 

successful identification of small-molecules that interact with their validated targets. 

The first project focused on the identification of new G-quadruplex stabilizers and 

their ability to inhibit human telomerase as an anticancer drug modality. The second 

project focused on the efforts made towards the identification of novel small-

molecules that selectively activate the human oxytocin receptor to regulate complex 

behaviors in animal models with therapeutic implications in various neuropsychiatric 

disorders. 
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CHAPTER 1 

 

INTRODUCTION 

 

The principal aim of pharmacology in drug discovery is the characterization of 

drug activity by system-independent scales that allow prediction of drug activity in all 

cellular systems. This thesis concentrated in two drug targets: telomeres and 

GPCRs. Telomere biology is a validated anticancer drug target. G-protein-coupled 

receptors (GPCRs) are a very relevant class of biological targets because they 

recognize external ligands and transmit signals to cellular G-proteins (guanine-

nucleotide-binding proteins) to elicit a response. These receptors are tractable for 

drug discovery because they are on the cell surface therefore drugs do not need to 

penetrate the cell to produce an effect [1]. In 2000, nearly half of all prescription 

drugs in the US were targeted towards GPCRs [2]. This thesis will explore screening 

and characterization of telomere and GPCR targeted agents in two separate 

projects.  

 

Overview of Drug Discovery Processes 

Once a target has been validated, the drug discovery process can be broadly 

divided into two phases: the discovery phase, involving high-throughput screening 



 2 
 

(HTS) in which large sections of chemical space are sampled for biological activity, 

and the lead optimization phase, during which chemically tractable and validated hits 

obtained from HTS are subject to methodological synthetic modification in order to 

optimize activity (Fig. 1.1.). Lead optimization assays characteristically use 

recombinant proteins from appropriate sources, for example human receptors for 

drugs designed to target human pathways, to allow superior prediction of the 

therapeutic activity of the molecules [1]. 

 

Identification of targets 

The first step in any drug discovery campaign is to understand the molecular 

biology of a disease or illness and to identify target proteins that play pivotal roles in 

the disease state. These efforts concentrate in identifying the targets that show a 

relationship with protein function and the symptoms of a disease. The sequence and 

three-dimensional structure of the target protein does not necessarily need to be 

known as direct or indirect rational design approaches for drug discovery can be 

taken [3].  

 

High-throughput screening (HTS) 

Once a target has been validated, the drug discovery process continues into the 

discovery phase, involving high-throughput screening in which large sections of 

chemical space are sampled for biological activity. HTS of chemical compounds to 

identify probes used in chemical biology and modulators of molecular targets is a 

mainstay of pharmaceutical development. The flexibility and diversity associated 
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with HTS including assay formats,  chemical library diversities, reagent and sample 

delivery methods, detection methods, the level of automation, and the data analysis 

algorithms, has allowed numerous areas of biology to interface with an equally 
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Fig 1.1. Schematic diagram of the drug discovery process. The discovery phase 

of drug discovery consists of HTS testing of as many compounds as possible at a 

single concentration. The Gaussian distribution shows the responses for a library of 

compounds; a predetermined criterion for activity is used to select compounds for 

testing in a dose-response mode. Under these circumstances, the compounds 

producing the greatest response at a single concentration (values furthest right on 

the Gaussian curve) are subjected to a dose–response analysis. The resulting 

dose–response curves yield potencies quantified as EC50 values; the Gaussian 

distribution for these data show that a small percentage of the compounds show 

high potency. These compounds are promoted to the lead optimization stage during 

which the activity of original lead molecule is optimized through chemical 

modification. If the lead optimization assay is well matched to the required 

therapeutic profile, then compounds of sufficient activity (and drug-like properties 

with sufficient safety profile) go on to clinical testing. Picture borrowed from [1]. 
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diverse palate of chemistry. Increasingly, HTS is being used to identify chemical 

probes of genes, pathways, and cell functions, with the ultimate goal of 

comprehensively delineating relationships between chemical structures and 

biological activities [4, 5]. Achieving this goal requires methodologies that efficiently 

generate pharmacological data from the primary screen and reliably profile the range 

of biological activities associated with large chemical libraries. In the early 1990s, the 

advent of combinatorial chemistry and commercial consolidation of small molecule 

collections resulted in a tremendous increase in compound numbers, requiring the 

development of high-throughput screening (HTS) to effective assay the chemical 

diversity. In addition, sensitive in vitro assays became readily available with the 

advancement of techniques to produce recombinant proteins and engineered cell 

lines [4, 6]. 

 Important aspects of a small-molecule screen can be divided into five 

categories: the assay, the library, the HTS process, the post-HTS analysis of data 

and compound structures, and the screen results (Fig. 1.2.). Assays fall into three 

general types: isolated molecular target assays, cell-free multicomponent assays, 

and cell- or organism-based assays. Cellular assays can be subdivided into reporter 

gene-type assays and phenotypic assays that measure outputs resulting from intact 

cellular processes. The library should include quality control procedures. The HTS 

process should contain assay controls, including inter-plate controls to assess 

systematic variations of the response, and intra-plate controls to establish the assay 

window and to analyze the uniformity of the biological response. During the post-

HTS analysis verification of chemical structure of active compounds should take 
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place. Finally, ranking of primary screening actives should allow description of the 

outcome of the HTS [5]. 

 

Validation of hits 

Secondary screens test many fewer compounds (e.g., the 1% most active 

compounds from the primary screen) and typically use at least duplicate 

measurements. Paradoxically, compounds with the highest measured activity levels 

on a primary screen will on average be less extreme on a secondary screen 

because of a statistical artifact known as 'regression toward the mean'. Accordingly, 

marginal hits on the first run may fail to validate on the second run merely because 

of random measurement error, although the size of the statistical artifact can be 

minimized by improving measurement precision (e.g., by obtaining replicate 

measurements). Confirmed hits with an established biological activity according to a 

structure-activity relationship (SAR) series and medicinal chemistry are termed 

'leads' that can develop into drug candidates for clinical testing [6]. 

Most drugs on the market were not discovered in their final form but went 

through a process of experimentation and modification to make the best possible 

therapeutic agent. The starting point of modern drug discovery is identification of a 

lead compound. The lead compound serves as an initial prototype that is modified to 

retain or enhance the desired activity and to eliminate or minimize unwanted 

properties. A lead compound may present high toxicity, low selectivity, problems with 

ADME (absorption, distribution, metabolism, and excretion) processes, or complex 

or expensive manufacturing processes. The lead has to be transformed into a drug 
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to impart suitable drug-like properties such as low toxicity and the ability to reach the 

site of action in appropriate concentrations, as well as acceptable cost of synthesis. 

The optimized compounds should be screened for efficacy in a suitable animal 

model [3].  

 

Drug discovery pipeline 

The drug research and development process is complex, lengthy, and 

expensive. For every 10,000 compounds synthesized or isolated as potential drugs, 

only one on average will successfully complete all the requirements to make it to the 

market. Currently, the estimated cost of bringing a new drug to the market is $800 

million, and the average length of time from discovery to patient is 10 to 15 years [3]. 

Figure 1.3. shows a scheme of the stages necessary for a new drug to reach the 

market.  

The projects in this dissertation will describe two different approaches to the 

successful identification of small-molecules that interact with their respective 

identified targets. Both of these projects involved the discovery and design stages of 

drug discovery. The first project focused on the identification of new G-quadruplex 

stabilizers and their ability to inhibit human telomerase as an anticancer drug 

modality. The second project focused on the identification of novel small-molecules 

that selectively activate the human oxytocin receptor to regulate complex behaviors 

in animal models with therapeutic implications in various neuropsychiatric disorders. 

The second section includes validation and optimization of high-throughput assays 



 8 
 

to identify actives, their validation against the receptor target and the effects of the 

active molecules in specific animal models that are clinically relevant. 
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Fig. 1.2. The flow of materials and data from assay to reported results in HTS. 
Picture borrowed from [5]. 
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Fig. 1.3. The stages of new drug development, starting with preclinical testing 
and ending with activities monitoring a marketed drug product. Borrowed from 

[3]. 
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BACKGROUND AND SIGNIFICANCE 

 

Novel G-quadruplex stabilizers 

Human chromosomes terminate with telomeres, which contain double-

stranded G-rich, repetitive DNA followed by a single-stranded overhang of the G-rich 

sequence. Single-stranded oligonucleotides containing G-rich telomeric repeats 

have been observed in vitro to fold into a variety of G-quadruplex topologies 

depending on the solution conditions. G-quadruplex structures are notable in part 

because G- quadruplex ligands inhibit both the enzyme telomerase and other 

telomere-binding proteins. Because telomerase is required for growth by the majority 

of cancers, G-quadruplex-stabilizing ligands have become an attractive platform for 

anticancer drug discovery [7]. Intense interest exists in the identification, design, and 

synthesis of small molecules that might selectively bind to defined sites in DNA or 

RNA [8]. 

 

Telomeres 

Telomeres are the DNA–protein complexes that define the ends of eukaryotic 

chromosomes and function as a cap to protect chromosome ends from unwanted 

cellular activities such as DNA recombination and degradation [9]. Human telomeric 

DNA is typically comprised of 5–12 kb of a repetitive, double-stranded DNA (5’-

TTAGGG-3’/3’-AATCCC-5’) followed by a 150- to 300-nucleotide, guanosine-rich, 

single-stranded overhang. In normal somatic cells, telomeric DNA shortens by 

approximately 50–200 bases during each cell cycle due to inefficient replication of 
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linear chromosomes by the normal DNA replication machinery and apparent 

degradation [10]. This routine loss of telomeric DNA, which eventually results in 

chromosomal instability, is offset in proliferating cells including the majority of cancer 

cells by the action of telomerase and is a major factor in immortalization and 

tumorigenesis [11, 12] 

 

Telomerase 

Telomerase is a ribonucleoprotein with reverse transcriptase activity that specifically 

extends the G-rich strand of telomeric DNA. Telomerase activity is over-expressed in 

85% of cancer cell types, but is not detected in normal somatic cells. This enzyme’s 

ability to catalyze the synthesis of telomeric DNA repeats is responsible for 

telomere-length homeostasis [12]. As a result, cancer cells increase their replicative 

lifespan indefinitely by extending and maintaining the length of their telomeres [9]. 

Inhibition of telomerase induces cell senescence and cell death in cancer cells [12]. 

Because telomere maintenance is required for continuous cellular proliferation, and 

because telomerase is differentially expressed in cancer cells when compared to 

normal cells, selective telomerase inhibitors have been sought as an anticancer drug 

approach. One approach to telomerase inhibition involves sequestering its substrate, 

single-stranded telomeric DNA, by inducing it to form G-quadruplex structures [12, 

13]. Although DNA exists predominantly in a right-handed duplex form in the 

genome, specific regions of the genome can exist in single-stranded form, or can 

adopt multistranded structures such as triplexes or tetraplexes, for example 

telomeric DNA can form a G-quadruplex [8, 14].  
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G-quadruplexes 

Single-stranded, G-rich telomeric DNA is capable of folding into four-stranded 

intramolecular quadruplex structures containing a tetrad of G–G base pairs [15]. 

Several conformations of G-quadruplexes formed by the human telomeric DNA 

sequence have been observed. An antiparallel G-quadruplex topology has been 

determined for the solution structure of a human telomeric sequence in the presence 

of Na+. The crystal structure of a K+-stabilized quadruplex formed by human 

telomeric DNA was found to be in a parallel propeller-like arrangement. However, 

the solution structure of a K+-stabilized human telomeric DNA was reported 

independently by two separate groups to exhibit a mixed type structure with three of 

the strands parallel to each other and one strand antiparallel. It is necessary for the 

RNA template of telomerase to associate with the G-rich single strand of the 

telomere to effectively catalyze DNA repeat addition. Telomerase from several 

species cannot utilize intramolecular G-quadruplex structures as a primer for DNA 

synthesis and telomerase activity is perturbed by G-quadruplex formation. In 

addition, it has been shown that the G-quadruplex-binding ligands can displace 

telomere-associated proteins such as hPOT1 and telomerase from the telomere in 

treated cells [8]. This unmasking of the 3’-overhang invokes a rapid DNA damage 

response, which rapidly leads to selective cell death and anti-tumor activity in vivo 

[12]. 
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G-quadruplex binding ligands 

Small-molecule G-quadruplex-binding ligands have been explored as an 

approach towards telomerase inhibition. By inducing or stabilizing G-quadruplexes, 

G-quadruplex-binding ligands have the potential to affect human biology by several 

mechanisms. One of the greatest challenges in this field is the production of ligands 

with significant selectivity for specific G-quadruplex DNA structures as compared to 

canonical dsDNA [7]. Compounds that selectively stabilize quadruplex DNA within 

telomeres might effectively block telomerase activity by locking the nucleic acid 

substrate into an unfavorable conformation for its replication. Such small molecules 

may be potentially valuable as therapeutic agents [8, 14] and chemical tools to study 

the biological relevance of G-quadruplexes. Small-molecule ligands that induce the 

formation of G-quadruplex structures have been reported, although none as yet 

have reached the clinic [12, 16]. In Chapter 2, a HTS for G-quadruplex binders was 

developed and the actives resulting from it were validated. 

 
 
Novel non-peptide human oxytocin receptor agonists and positive allosteric 

modulators 

Human behavior is complex and poorly understood. Understanding the 

pharmacological basis for complex behavior would allow the development of tools to 

regulate behavioral disorders, which would be of great benefit in certain disease 

states. There is a substantial amount of evidence that oxytocin (OT) and activation 

of the oxytocin receptor (OTR) at the central nervous system (CNS) level modify 

complex behaviors.  
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There is a pressing need for selective small molecules that selectively 

activate the OT system within the CNS. Such small molecules could serve as new 

chemical tools to elucidate the complex roles for oxytocin in complex behaviors and 

provide leads for a drug discovery campaign focused on specific neuropsychiatric 

disorders. The work presented in Chapter 3-5 was focused on both the identification 

of agonists and positive allosteric modulators of the OTR through a HTS campaign 

and the confirmation that small-molecules can influence complex behaviors through 

the OT pathway. Potential leads were validated with secondary and counter screens 

for OTR-efficacy and specificity. A previously reported synthetic agonist was then 

tested with well established animal models for anxiety, analgesia, and deficits in 

social memory and prepulse inhibition.  

 

Oxytocin 

All neurohypophysial hormones are nonapeptides with a disulfide bridge 

between Cys residues 1 and 6. This results in a peptide constituted of a six-amino 

acid cyclic part and a COOH-terminal α-amidated three-residue tail. OT and 

vasopressin (AVP) differ from each other in terms of two amino acids (Ile vs. Phe at 

position 3 and Leu vs. Arg at position 8, respectively (Figure 1.4.), which enables 

AVP and OT peptides to selectively bind their respective receptors [17, 18]. OT and 

AVP have been found only in mammals and probably have developed in parallel 

with typical mammalian behaviors, such as uterine contraction during labor and milk 

ejection essential for lactation.  
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[Arg8] vasopressin           Cys-Tyr-Phe-Gln-Asn-Cys-Pro-Arg-Gly-NH2

1 6 8

Oxytocin Cys-Tyr-Ile-Gln-Asn-Cys-Pro-Leu-Gly-NH2

Carbetocin CH2CH2CH2-CO-Tyr(Me)-Ile-Gln-Asn-Cys-Pro-Leu-Gly-NH2

Atosiban Mpa-D-Tyr(Et)-Ile-Thr-Asn-Cys-Pro-Orn-Gly-NH2

Barusiban CH2CH2-CO-D-Trp-Ile-alle-Asn-Hcy-MeOrn-ol
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Fig. 1.4. Ligands of the oxytocin receptor. Arg8-vasopressin, agonist of the 

vasopressin receptor and partial agonist of the OTR. Oxytocin and carbetocin, 

agonists of the OTR. Atosiban and barusiban, antagonists of the OTR. Alle, 

alloisoleucine; Hcy, homocysteine; MeOrn-ol, Nα-methylornithinol; Mpa, 3-

mercaptopropionic acid; Orn, ornithine. Picture from [19]. 
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OT gene structure 
 

In all species, OT and vasopressin genes are on the same chromosomal 

locus but are transcribed in opposite directions (Fig. 1.5.). The human gene for OT-

neurophysin I encoding the OT prepropeptide is mapped to chromosome 20p13 and 

consists of three exons: the first exon encodes a translocator signal, the 

nonapeptide hormone, the tripeptide processing signal (GKR), and the first nine 

residues of neurophysin; the second exon encodes the central part of neurophysin 

(residues 10–76); and the third exon encodes the COOH-terminal region of 

neurophysin (residues 77– 93/95) [17].  

The main function of neurophysin, a small (93–95 residue) disulfide-rich 

protein, appears to be related to the proper targeting, packaging, and storage of OT 

within the granula before release into the bloodstream. OT is found in high 

concentrations (0.1 M) in the neurosecretory granules of the posterior pituitary 

complexed in a 1:1 ratio with neurophysin. In such complexes, OT-neurophysin 

dimers are the basic functional units [20].The protonated α-amino group (Cys-1) in 

OT forms an essential contact site to neurophysin via electrostatic and multiple 

hydrogen bonding interactions. Due to its dependence on amino group protonation 

(pKa; 6.4), the binding strength between OT and neurophysin is much higher in an 

acidic compartment like the neurosecretory granules (pH: 5.5). Conversely, the 

dissociation of the complex is facilitated as the complex is released from the 

neurosecretory granules and enters the plasma (pH 7.4) [17] . 

Analysis of various gene constructs in transgenic mice led to the proposal that 

cell-specific enhancers for OT and vasopressin gene expression are not located on 
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the 5’-upstream regions of these genes, but is present in the intergenic region 0.5–3 

kb downstream of the vasopressin gene (see fig. 1.5.). The human and rat OT 

promoters could be stimulated by the ligand-activated estrogen receptors ERα and 

ERβ, the thyroid hormone receptor THRα, and the retinoic acid receptors RARα and 

RARβ in a variety of cells [21, 22]. The estrogen-induced rise in uterine OT mRNA is 

probably mediated via the common hormone response element in the OT gene 

promoter [17]. 

 

OT synthesis and localization 

OT and AVP are mainly synthesized in the magnocellular neurons of the SON 

(supraoptic nucleus) and PVN (paraventricular nucleus) in the hypothalamus; they 

are the most important nuclei of the hypothalamic-neurohypophysial system. OT and 

AVP are assembled on ribosomes at the level of the soma of the neurons as 

precursors which are subsequently processed in the neurosecretory vesicles. During 

the intravesicular post-translational processing, OT precursor undergoes sequential 

proteolytic cleavage and other enzymatic modifications, such as glycosylation, 

phosphorylation, acetylation, and amidation that lead to the three final products: OT, 

neurophysin and a carboxy-terminal glycoprotein. The OT prepropeptide is subject 

to cleavage and other modifications as it is transported down the axon to terminals 

located in the posterior pituitary [23]. The mature peptide products, OT and its carrier 

molecule neurophysin, are stored in the axon terminals until neural inputs elicit their 

release [17]. Action potentials in the neurosecretory magnocellular neurons in the 

PVN and SON trigger the release of OT from their axon terminals in the 
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Fig. 1.5. Organization of the oxytocin (OT) and vasopressin (VP) gene 
structure including schematic depiction of the putative cell-specific enhancers 

(open circle, enhancer of OT gene; shaded circle, enhancer of VP gene). A. 

Details of the approximately 2160-bp region (composite hormone response element) 

of the upstream OT gene promoter conserved across five species including the 

sequence of the response elements estrogen response element (ERE). B. D domain 

organization of preprooxytocin including the processing sites. The precursor is split 

into the indicated fragments by enzymatic cleavages, one involving a glycyl-

lysylarginine (GKR) sequence and leaving a carboxamide group at the COOH-

terminal end of OT. Signal: signal peptide. Picture from [17]. 
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neurohypophysis [24]. 

 

OT release in the hypothalamus-neurohypophysis axis 

Within the neurohypophysis each axon produces several nerve terminals that 

constitute about 50% of the total volume of the neural lobe. Once activated, 

magnocellular neurons release OT into the blood stream where it is transported to 

distant target organs, such as mammary gland and kidney. Several other biologically 

active substances, including neuropeptide Y, tyrosine hydroxylase, dynorphin, 

thyrotropin-releasing hormone, atrial natriuretic factor, galanin and nitric oxide (NO) 

synthase, are co-released with OT and AVP from magnocellular neurons, however, 

the reciprocal effects between them and OT are still unknown [25].  

Oxytocinergic magnocellular axons do not reach only the posterior pituitary, 

but also terminate in the arcuate nucleus, the lateral septum, the medial amygdaloid 

nucleus, and the median eminence [26]. In the magnocellular SON and PVN nuclei, 

OT is also locally released from dendrites acting as a self-neuromodulator: this 

intranuclear  release is fundamental for the synchronization of the depolarization of 

OT neurons during lactation and for the positive feed-back of OT dendritic release in 

the SON during parturition [27]. In fact, the somatodendritic release occurs in 

response to a variety of stimuli, including suckling, parturition, dehydration, 

hemorrhage, fever, physical restraint, pain, mating and territorial marking behaviors, 

administration of hypertonic solutions or pharmacological challenges. 

OT neurons are also localized in the dorsal-caudal part of the PVN. The 

axons of these parvicellular cells are part of the descending tract directed to the 
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sympathetic centers of the spinal cord and to the parasympathetic caudal autonomic 

centers, including the dorsal motor nucleus of the nervus vagus and the nucleus of 

tractus solitarii [28]. The peripheral synthesis of OT has also been demonstrated in 

placenta, uterus, corpus luteum, amnion, testis, and heart [25]. 

Hypothalamic OT can reach the anterior pituitary through the hypothalamic-

pituitary portal vascular system. In rats, OT is released into the portal vessels and 

specific OTR are present in the adenohypophysis. OT seems to be involved in the 

regulation of the release of different adenohypophysial hormones, in particular 

prolactin, adrenocorticotropic hormone (ACTH) and gonadotropins. Pituitary OTR 

gene expression is restricted to lactotrophs and increases at the end of gestation 

[29]. However, it is unclear whether OT, released during lactation, is responsible for 

the concomitant secretion of prolactin from the adenohypophysis. 

The endocrine response to stress is mediated by the activation of the 

hypothalamic-pituitary-adrenal axis; in particular, corticotropin- releasing hormone 

(CRH) and AVP stimulate ACTH secretion from the anterior pituitary. In rats, OT has 

been demonstrated to potentiate the release of ACTH induced by CRH: in fact, if 

CRH is responsible for the immediate secretion of ACTH following an acute stress, 

when CRH levels begin to decrease during prolonged stress, the persistent level of 

OT in the median eminence seems to be related to the delayed ACTH response and 

the generation of ACTH pulsatile secretory bursts [30]. On the contrary, in humans, 

OT infusion inhibited the plasma ACTH responses to CRH, and suckling and breast 

stimulation increased and decreased, respectively, plasma OT and ACTH levels. 

These observations indicate an inhibitory influence of OT on ACTH secretion. 
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Luteinizing hormone (LH) secretion from the adenohypophysis is primarily regulated 

by the gonadotropin-releasing hormone (GnRH). OT has been demonstrated to 

stimulate LH release. For example, its administration to proestrous rats can advance 

the LH surge with an earlier ovulation. Moreover, OT seems to sensitize the pituitary 

before full GnRH stimulation and in women, pre-ovulatory OT administration leads to 

the onset of the mid-cycle LH surge [31].  

The magnocellular neurons also release OT and VP from their perikarya, 

dendrites, and/or axon collaterals [32]. Although the amount of release is small 

compared with the amount released from the neurohypophysis, the concentration of 

OT and AVP in the extracellular fluid of the SON resulting from this somatodendritic 

release has been calculated to be 100- to 1,000-fold higher than the basal plasma 

concentration, i.e., more than 1–10 nM. High-frequency electrical discharges of OT 

neurons as they occur, e.g., during the milk ejection reflex, might release even 

higher local OT concentrations [33]. 

Plasma OT does not readily cross the blood-brain barrier, and there is no 

relationship between the release of OT into the blood by the neurohypophysis and 

the variations in OT concentrations in the cerebrospinal fluid (CSF). Peripheral 

stimulations such as suckling or vaginal dilation that elicit large increases in plasma 

OT may or may not change the concentration of OT in the CSF. As shown in rats, 

electrical stimulation of the neurohypophysis only evokes the release of OT into the 

blood, whereas stimulation of the PVN elicits a release of OT into the blood and into 

the CSF [17, 34]. 
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OT in the CSF probably derives from neurons that extend to the third 

ventricle, the limbic system, the brain stem, and the spinal cord. In the CSF, OT is 

normally present at concentrations of 10–50 pM, and its half-life is much longer (28 

min) than in plasma (1–2 min) [35]. In humans and in monkeys, OT concentrations in 

the CSF follows a circadian rhythm in the with peak values at midday. No such 

circadian rhythms have been observed in the CSF of rats, cats, guinea pigs, or 

goats. Circadian rhythms in plasma OT concentrations have not been reported [36]. 

Moreover, OT fragments such as OT-(1--6) or OT-(7--9) could cross the blood-brain 

barrier more easily and possibly exert their effects exclusively on the brain, e.g., to 

influence learning and memory processes [17, 37].  

Intranuclear release of these peptides occurs in response to a wide 

variety of stimuli, including suckling; parturition; hemorrhage; certain kinds of stress 

such as fever, physical restraint, and pain; mating and territorial marking behaviors; 

dehydration; administration of hypertonic solutions; and a range of pharmacological 

stimuli. During parturition and suckling, OT is released within the SON and 

apparently excites via a short positive-feedback loop the same cells by which it is 

produced and secreted. This autoexcitatory mechanism leads to further amplification 

of local and/or neurohypophysial OT release and ensures synchronous firing of 

oxytocinergic neurons [17, 27, 38, 39] . 
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Oxytocin receptor (OTR) 

 

OTR Structure 

The OT receptor is a typical member of the rhodopsin-type (class I) GPCR 

family (fig.1.6.) [40]. The high homology of the nonapeptides of the evolutionary line 

isotocin-mesotocin-OT is also reflected in the high homology of the corresponding 

receptors. Sequence homologies with the vasopressin V1 (nearly 50%) and V2 

receptors (40%) are significantly lower. About 100 amino acids (25%) are invariant 

among the 370–420 amino acids in the human receptors for vasopressin V2, V1a, 

V1b, and OT including key amino acid residues that are involved in receptor function 

(fig.1.7) , [17, 41].  

The combined evidence from studies involving site-directed mutagenesis, 

photoaffinity labeling and molecular modeling indicate that the cyclic part of the OT 

molecule is lodged in the upper one-third of the receptor binding pocket and 

interacts with transmembrane domains 3, 4 and 6, whereas the linear C-terminal 

part of the OT molecule remains closer to the surface and interacts with 

transmembrane domains 2 and 3, in addition to the first extracellular loop (see fig. 

1.8.) [41]. 

 

OTR gene structure  

The encoded OTR receptor is a 389- amino acid polypeptide with 7 

transmembrane domains. As discussed above, the OTR/VR subfamily shows a high 

sequence homology (see fig. 1.9. for primary gene sequence alignment). To date,  
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Fig. 1.6. Schematic structure of the human OT receptor with amino acid 
residues shown in one-letter code. Residues conservative within the 

OT/vasopressin receptor subfamily are outlined in gray, and residues conservative 

for the whole G protein-coupled receptor superfamily are outlined in black. The 

putative N-glycosylation ("Y") and palmitoylation (at C346/C347) sites are marked. 

Picture borrowed from [17]. 
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Fig. 1.7. Schematic model of the human oxytocin receptor indicating amino 
acid residues which are putatively involved in ligand-binding, cholesterol-
binding, and associated signal transduction events. The glutamine and lysine 

residues highly conserved within the vasopressin/oxytocin receptor family may partly 

define an agonist-binding pocket which is common to all the different subtypes of 

this receptor family. An oxytocin docking site has been proposed by a molecular 

modeling approach (marked by arrows). In the inactive receptor conformation, the 

highly conserved arginine (R137) may be constrained in a pocket which is formed by 
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polar residues (indicated by asterisks). Following agonist binding this arginine side 

chain may be shifted out of the ‘polar pocket’ thereby unmasking a G protein binding 

site. Receptor domains putatively interacting with oxytocin, peptide oxytocin 

antagonists and Gqα are marked by lines and dashed boxes as indicated. The amino 

acid residues marked by a circle with asterisk edge have been predicted to form a 

cholesterol docking domain according to molecular modeling. Picture borrowed from 

[42]. 
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Fig. 1.8. Schematic model of the structure of the (OT) receptor and its 
interaction with OT. The endogenous ligand, the nonapeptide OT, is shown at the 

top left with residues numbered 1–9. The OT receptor (shown in blue) is depicted in 

its proposed interaction with the ligand (shown in red). The seven putative 

transmembrane domains are indicated by Roman numerals. Picture from [41]. 
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the OT receptor encoding sequences from pig, rat, sheep, bovine, mouse, and 

rhesus monkey have also been identified. 

The OT receptor gene is present in a single copy in the human genome and 

was mapped to the gene locus 3p25–3p26.2. The gene spans 17 kb and contains 3 

introns and 4 exons. Exons 1 and 2 correspond to the 5’-prime noncoding region. 

Exons 3 and 4 encode the amino acids of the OT receptor. Intron 3, which is the 

largest at 12 kb, separates the coding region immediately after the putative 

transmembrane domain 6. Exon 4 contains the sequence encoding the seventh 

transmembrane domain, the COOH terminus, and the entire 3’-noncoding region, 

including the polyadenylation signals [17].  

 

Signal transduction, G Protein coupling, and receptor regulation 

OTR are functionally coupled to Gq/11α GTP binding proteins that stimulate, 

together with the Gβγ heteroduplex, the activity of phospholipase C-β isoforms. 

Phospholipase C-β generates inositol trisphosphate and 1, 2-diacylglycerol. Inositol 

trisphosphate triggers Ca2+ release from intracellular stores, whereas diacylglycerol 

stimulates protein kinase C, which phosphorylates unidentified target proteins. 

OTR require at least two essential components for high affinity OT binding: 

divalent cations such as Mn2+ or Mg2+ and cholesterol. Divalent metal ions like Mg2+ 

have long been known to increase the response of target cells to OT and to shift the 

dose-response curve to the left. Thus addition of Mg2+ was found to increase both 

the OT binding capacity and the affinity state of the OT receptor. This is 
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Fig. 1.9. Primary sequence alignments of the human OT receptor (OTR), the 
human vasopressin 2 receptor (V2R), the human vasopressin 1a receptor 
(V1aR), and the human vasopressin 1b receptor (V1bR). The putative 

transmembrane helices 1-7 are underlined (asterisks). The residues conservative 

within the subfamily (~25% of the whole sequence) are outlined in gray, while those 

conservative for the whole G protein-coupled receptor superfamily are outlined in 

black. Picture borrowed from [17]. 
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similar to cholesterols effect on OTR. In addition, Mg2+ has been proposed to display 

its effect on the OT receptor interaction by influencing positive cooperativity [43]. It 

appears that cholesterol and Mg2+ are essential allosteric modulators of the OT 

receptor and may be involved in the regulation of OT-mediated signaling functions. 

Cholesterol can modulate receptor function by both changes of the membrane 

fluidity and direct binding effects, e.g., in case of the OTR [44]. Plasma membranes 

with lowered cholesterol content showed a decreased capacity (Bmax) of binding 

sites and/or a decreased affinity (Kd) of ligand-receptor binding [17]. 

Progesterone is considered to be essential to maintain the uterine 

quiescence. Progesterone specifically binds to the rat OTR with high affinity (Kd = 20 

nM) and thereby inhibits the receptor function [45]. In case of the human OTR, a 

direct inhibitory interaction [inhibitory constant (Ki) = 30 nM] with a progesterone 

metabolite, 5-β-pregnane- 3, 20-dione, has been reported. Progesterone could act 

as a negative modulator of the OT receptor and thus offered a plausible mechanism 

of how progesterone could contribute to uterine quiescence. 

 

OTR distribution in the CNS 

The brain distribution of OT receptors shows a wide interspecies variability. In 

the rat, they are present in the olfactory system, basal ganglia, thalamus, lymbic 

system (bed nucleus of the stria terminalis, central amygdaloid nucleus, and ventral 

subiculum), hypothalamus (ventromedial nucleus), brain stem, and spinal cord with 

age-related changes in their density. In humans, OT binding sites have been mainly 

found in the pars compacta of substantia nigra and globus pallidus, as well as in the 
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paracrine manner from their dendrites of the SON to synchronize bursts of OT 

release [47]. Each burst leads to massive release of OT into the bloodstream to the 

lactating breasts. There it causes contraction of the myoepithelial cells in the walls of 

the lactiferous ducts, sinuses, and breast tissue alveoli. In humans, within 30 s to 1 

min after a baby begins to suckle the breast, milk begins to flow. Probably, other 

important factors, such as the sight, smell, and sound of the baby, facilitate this 

process [48]. This process is called milk ejection or milk let-down reflex and 

continues to function until weaning [17]. Electrophysiological studies indicated a 

positive feedback mechanism during birth similar to that occurring during suckling 

[49].  

 

Male reproductive system 

In several species, a pulse of systemic OT, presumably of hypothalamic 

origin, appears to be associated with ejaculation. OT could act peripherally by 

stimulating smooth muscle cells of the male reproductive tract, but could also have 

central effects in the brain by modulating sexual behavior. In the human, the 

complete OT system appears to be present in testis, epididymis, and prostate. OT is 

present in the prostate at concentrations higher than in the plasma and can increase 

the resting tone of prostatic tissue from guinea pig, rat, dog, and human (58, 182, 

265). OT also stimulates contractile activity of mammalian prostates in vitro (58). 

This evidence suggests that OT is involved in the contraction of the prostate and the 

resulting expulsion of prostatic secretions at ejaculation (413). 
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anterior cingulate and medial insula, but not in the hippocampus, amygdala, 

entorinal cortex and olfactory bulb [25]. 

 

OT peripheral functions 

 

Female reproductive system 

Circulating oxytocin is mostly known for its ability to elicit the contraction of 

uterine smooth muscle at term and that of myoepithelial cells that surround the 

alveoli of the mammary gland during lactation. The pregnant uterus is one of the 

traditional targets of OT. OT is one of the most potent uterotonic agents and is 

clinically used to induce labor. Accordingly, the development of highly specific OT 

antagonists may be of therapeutic value for the prevention of preterm labor and the 

regulation of dysmenorrhea [18]. In several species, the ovary has been shown to 

contain OT and may be a site of local OT production [46]. 

The other classical role assigned to OT is milk ejection from the mammary 

gland. The secretion of the mammary glands is triggered when the infant begins to 

suck on the nipple. The stimulation of tactile receptors at that site generates sensory 

impulses that are transmitted from the nipples to the spinal cord and then to the 

secretory oxytocinergic neurons in the hypothalamus. These neurons display a 

synchronized high-frequency bursting activity, consisting of a brief (3–4 s) high-

frequency discharge of action potentials recurring every 5–15 min. During this 

activity, a dual mode of OT secretion has been identified. OT neurons secrete a 

large amount of neuropeptide into the blood and, in parallel; they secrete it in a 
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Kidney 

The kidney controls hydromineral excretion, which is regulated in part by 

neurohypophysial hormones OT and AVP neurons are activated by hypovolemia or 

hyperosmolarity. When plasma sodium concentration exceeds 130 mM, the levels of 

both OT and AVP increase as an exponential function of plasma sodium 

concentration. OT is a non-hypertensive natriuretic agent involved in normal osmolar 

regulation [50]. 

 

Cardiovascular system and thymus 

Peripherally injected OT decreases mean arterial pressure and reduce heart 

rate in rats. It appears that the complete OT system is present in rat vasculature. 

Thus OT might play a direct role in volume and pressure regulation in a paracrine/ 

autocrine manner. The neurohypophysial peptides have been shown to trigger 

thymocyte proliferation and could induce immune tolerance of this conserved 

neuroendocrine family [17]. 

 

Adenohypophysis 

It has been suggested that some hypothalamic OT reaches the anterior 

pituitary lobe via the hypothalamo-pituitary portal vasculature. OT might thus be able 

to influence anterior pituitary hormones as a hypothalamic regulating factor. OT is 

present in nerve terminals in the median eminence. It was found to be released into 

the portal vessels, and specific OT receptors are present in the rat 

adenohypophysis. Another pathway for OT delivery to the adenohypophysis might 
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be the short portal vessels connecting the posterior and anterior lobes. OT may 

participate in the physiological regulation of the adenohypophysial hormones 

prolactin, ACTH, and the gonadotrophins [17]. 

 

Evidence that OT controls complex behavior 

 

Social behavior, cognition, and memory 

A substantial amount of evidence demonstrates that OT modifies behavior in 

mammals, especially in rodents. During the past decade, a new field of research, 

social neuroscience, has emerged to investigate social behavior and social cognition 

in the organization of a ‘social brain”. Social behavior is essential for reproduction 

and includes recognition of key social interactions. The olfactory system has evolved 

to allow intraspecies communication pertaining to the gender, reproductive state, 

and location of possible mates as well as territory, and social status. From the 

sensed social information a mammal can learn about individual identity. By 

imprinting, which is permanently storing social information, animals recognize 

parents, siblings (filial) and appropriate sexual partners (sexual). This learning is 

critical for survival and reproduction. In rodents, recognizing conspecifics is a short-

lived processed. In the field, rodents live in colonies with a common pheromonal 

signature spread via grooming [51]. 

Initial studies on the role of OT in social memory showed an attenuation of 

social recognition when OT was administered peripherally in high doses in male rats. 

This attenuation was blocked with administration of OT antagonists [52, 53]. Later 
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studies with more physiological levels of OT demonstrated that peripheral 

administration of OT at low doses, in fact, facilitated social recognition in male rats 

[54]. These findings suggest that the effects of OT on social recognition follow an 

inverted U-shaped dose response curve where moderate doses facilitate, and high 

doses attenuate social recognition. The same dose response curve has been found 

in OT administered centrally (ICV) in male rats. OT antagonist administered centrally 

blocked the facilitating effects of low dose OT but did not disrupt social recognition 

per se. This antagonist also blocked the attenuation effects of high doses of OT [55]. 

The ability of OT agonists to facilitate social recognition in males and not females, 

and the ability of OT antagonists to interfere with normal social recognition in 

females but not males suggested the possibility of a sexual dimorphism with respect 

to the roles of OT in social recognition in the rat [56]. The deficit in social interactions 

caused by chronic phencyclidine administration is used as a valid animal model of 

schizophrenia. OT was able to reverse this deficit in rats. This report suggests that 

deficits in the central oxytocinergic system may underlie the social impairment 

exhibited in this animal model [57]. 

The evidence for OT in social recognition in mice, both female and male, is 

more straight-forward than that in rats. Investigations of an OT knockout (OT-KO) 

mouse revealed a total deficit in social recognition. Male OT-KO mice, which 

completely lack the OT peptide, never displayed the typical reduction in olfactory 

investigation upon repeated exposures to the same stimulus female. This deficit was 

not due to a more general deficit in olfaction suggesting that OT is critical to the 
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processing of specific social cues. The deficit in social recognition was reversible 

with both ICV and site-specific injections of OT. Furthermore, normal social 

recognition was blocked in wild type (WT) mice with a single ICV injection of OT 

antagonist before the initial encounter [58]. The ability to rescue social recognition in 

OT-KO mice with a single injection of OT clearly demonstrates the importance of this 

peptide in the processing of social cues and subsequent social recognition in the 

male mouse. The social recognition deficits of the OT-KO mice are not limited to 

male mice. The female OT-KO mice also show a significant deficit in social 

recognition that was not attributable to other behavioral changes. In addition, OT-KO 

females are unable to distinguish healthy from parasite infected males during mate 

selection [59, 60]. The essential role of OT in social memory in female mice has also 

been demonstrated by the effects of OT-KO on the Bruce effect. OT-KO females 

failed to remain pregnant if re-exposed to either their mate or a novel male. Only 

females that were allowed to remain with their mate maintained pregnancy [61]. This 

inability to distinguish between the mate and novel male in the OT-KO females 

demonstrates the importance of OT in long-term social memory as well as short-

term social recognition [56]. Mice with a null mutation of OT (OT-KO) show no 

decrease in investigation of another mouse after repeated encounters as opposed to 

wild-type mice that decrease 50% investigation time when reintroduced to the same 

stranger. These mutant mice do not show deficits on several tests of nonsocial 

memory nor do they differ in tests of olfactory function. Thus, the social memory 

deficits present in mice appear to be specific to the social domain [51, 56, 58, 62-

64]. 
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Trust 

In humans, social behavior is key for survival; it includes communication, 

recognition, and expectation. Human interactions are partly driven by feelings of 

trust. Many reports address the biological basis of trust. Intranasal administration of 

OT to healthy human subjects substantially increased trust among them in a trust 

game with real monetary stakes. The effects of OT on trust were not due to general 

increase in readiness to take risks, but to a person’s willingness to accept social 

risks arising through interpersonal interactions [65]. OT treatment did not alter the 

trusting behavior even after they have learned that their trust had been breached 

several times [66]. OT also increased generosity in healthy subjects that had to split 

a sum of money with a stranger. The test dissociated generosity from altruism and 

showed a connection of OT with emotional identification with another person [67].  

 

Infer mental state of others 

In another study, OT improved the ability to infer the affective mental state of 

others by interpreting subtle social cues in the “reading the mind in the eyes” test. 

The ability of mind-reading is pervasive in human social interactions. The capability 

of OT treatment to aid in the ability to infer the affective mental state of others might 

reduce ambiguity in social situations and encourage social approach and affiliation 

[68]. OT also showed a role in the regulation of gazing to the eye region of human 

faces to, maybe, enhance facial processing, emotion recognition, interpersonal 

communication, and social approach behavior in humans [69, 70].  
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Maternal behavior 

Social attachment, social affiliation, sex behavior, and parental care are 

among the most highly motivated social behaviors. The onset of maternal care, 

switching from avoidance to intense interest, is of particular interest in the study of 

the OTR system [51]. Oxytocin may be critical for linking pup signals to surging 

motivated maternal behaviors. Blockade of OT neurotransmission results in a 

significant inhibition of the onset of maternal behavior but fails to affect maternal 

behavior once it has been established [71]. Central OT given to estrogen-primed, 

ovariectomized, virgin female rats induced a rapid onset of full maternal behavior in 

a dose dependent manner [72, 73]. In addition, OT improves long-lasting spatial 

memory during motherhood [74, 75]. OTR knockout (OTR-KO) female mice showed 

defects in maternal nurturing, OTR-KO males were more aggressive in a social 

setting, and OTR- KO infants emitted fewer vocalizations than wild-type littermates 

in response to social isolation [76]. Intravenous administration of a non-peptide OT 

antagonist disrupted parental-like behavior in monkeys [77]. 

These OT-mediated affects may be manifest in humans. Early parental 

separation (EPS) increases the risk for emotional disorders in adulthood, and 

studies have shown that administration of intranasal OT to EPS subjects attenuated 

cortisol release when compared with control subjects. An altered central sensitivity 

to OT after EPS could explain some of the underline biological reasons for emotional 

distress [78].  

Greater evidence implicates OT in human maternal care. OT levels are very 

stable throughout all trimesters of pregnancy, and are positively associated with 
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maternal–fetal attachment as measured by the maternal–fetal attachment scale 

(self-reported feelings regarding the mothers’ views of their fetus [79]. OT levels in 

the first trimester and early postpartum period have been positively correlated with 

certain maternal bonding behaviors, such as gaze with infant, vocalizations to infant, 

and affectionate touch [80]. Viewing images of their children activates dopaminergic 

pathways in the mothers’ brains associated with reward that also contain high levels 

of OT and AVP receptors [81]. Mothers with variants of the serotonin transporter and 

the OTR genes (the 5-HTT SLC6A4 and OTR rs53576 polymorphisms, respectively) 

show lower levels of sensitive responsiveness to their toddlers (rated by observers 

on the aid given by the mothers to their children on cognitively difficult tasks [82], 

implicating these systems in production and bonding of OT in maternal 

responsiveness. The effect of the rs53576 polymorphism on OTR pharmacology is 

not known. It is possible that that OT may promote parental care and subsequent 

feelings of attachment in both the parent and the offspring; however, more study is 

needed.  

 

Pair bonding 

Pair bonding in monogamous species is another example of social motivation 

that is regulated in part by OT. Prairie voles treated with OT present a partner 

preference formation, and conversely, antagonists reduce partner preference 

formation without reducing mating behavior [83-85]. Species-specific OTR 

expression in the brain appear to be associated with a monogamous versus a non-

monogamous social structure [86]. This pattern of expression and its involvement in 
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reward pathways of the prairie vole brain could be a potential cellular basis for these 

effects [87].  

In humans, OT significantly increased positive communication behavior in 

relation to negative behavior during a couple’s conflict discussion and it reduced 

salivary cortisol levels after the conflict [88]. OT further strengthens the anxiolytic 

effect of social support (presence of a friend) during the Trier Social Stress Test 

(public speaking and arithmetic in front of an audience), as measured by decreased 

corticosterone in men [89]. In women, OT is positively correlated with higher self-

reported feelings of attachment (tendency to express and share emotions) on the 

Temperament and Character Inventory [90]. Women viewing pictures of loved ones 

have high brain activity in dopaminergic pathways associated with reward, which 

also contain high levels of OT receptors [81], as do people self-describing as being 

‘‘intensely in love’’ [91, 92]. However, no study has conclusively shown that being in 

a relationship, or ‘‘in love,’’ is associated with high levels of OT [93]. These findings 

support the role of OT in facilitating approach and pair bonding behavior.  

 

Sexual behavior 

Oxytocin is also involved in initiating and maintaining female sexual behavior 

in rats. Central administration of OT facilitates receptive and proceptive components 

of female sexual behavior and decreases male-directed agonistic behavior in 

estradiol-primed female rats. These effects are abrogated with the use of an OT 

antagonist [94, 95]. In another study, i.v. administration of a non-peptide OT 

antagonist decreased female monkey’s sexual behavior [77]. 
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In men, OTR can be found in the corpus cavernosum and epididymis of the 

penis. OT binding to the OTR in this region may affect contractility [96, 97] and 

subsequent ejaculation [98]. Plasma OT levels increase during sexual arousal and 

orgasm significantly raise OT levels in men [99]. In men, intranasal inhalation of OT 

significantly increases plasma OT and epinephrine levels for at least 1 h, and 

increases self-perception of arousal during masturbation [100]. Additionally, a recent 

case study indicates that intranasal OT administered during coitus may treat 

anorgasmia in men in cases where medical conditions, drug abuse, and 

psychological issues have been ruled out [101, 102]. 

In women, the primary medical use of OT treatment is to bring about labor, as 

it quickly advances uterine contractions [103]. OT has also been used to facilitate 

breast-feeding, as it aids in milk let-down, but its efficacy is uncertain [104]. One 

case study reports that intranasal inhalation of OT to stimulate breast-feeding 

increases vaginal lubrication and feelings of arousal [105]. Furthermore, plasma OT 

levels significantly correlate with higher levels of arousal and lubrication as 

measured by the Female Sexual Function Index [106]. Plasma OT levels increase in 

women during sexual arousal and are elevated further by orgasm [99, 102, 107]. 

 

Anxiety, fear, and stress response 

OT is also involved in anxiety and stress response. Female OT-KO mice 

displayed more anxiety-related behavior and released more corticosterone after 

psychogenic stressors then WT animals. Male WT mice presented anxiolytic-like 

behavior when administered central OT, and this effect was blocked by 
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administration of an OTR antagonist. These findings support the hypothesis that 

central OT has anxiolytic properties and attenuates the stress response to 

psychogenic provocation [108-110]. In healthy humans, the combination of social 

support and OT decreased cortisol levels and increased calmness concomitant with 

decreased anxiety in response to stress during the Trier Social Stress Test [89]. 

Intranasal (IN) OT given to healthy men showed anxiolytic effects by depressing 

amygdala activation in socially relevant stimuli and reducing coupling to brainstem 

regions implicated in fear. OT also seems to impact fear conditioning and extinction 

through modulation of the amygdala function in humans [111]. 

 

Aggression 

Little is known about the role of OT in human aggression. Higher levels of 

auto-antibodies reactive for OT are found in males with conduct disorder than in 

controls [112]. OT administration has been shown to reduce amygdalar activity in 

response to fear-inducing visual stimuli [111], and anxiety levels appear to be linked 

to aggression in several animal models [113-115]. In humans, OT may act to 

decrease anxiety by increasing recognition [116] and feelings of affiliation [65].  

 

Learning and memory 

Recent animal studies suggest that OT is implicated in the CNS control of 

learning and memory [117-121]. Similar to rodent studies, the available data in 

humans indicate that OT is generally amnesic in both men and women. In humans, 

OT selectively influences memory performance depending on the kind of memory 
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test and the psychobiological relevance of stimuli [122].  For example, during face 

portrait recognition tests, OT improved identity recognition. Similarly, in men treated 

with intranasal OT, word recall is significantly impaired in comparison to both 

placebo controls and subjects administered Lys8-vasopressin [123]. In conclusion, 

oxytocin has distinct effects on memory performance for facial identity and may 

contribute to the modulation of social behavior [116]. 

Healthy males given OT show deficits in learning processes [119]. Initial word 

storage (correctly remembered words after first presentation) and rate of storage 

(number of trials to recall words at least once) are significantly impaired, with no 

differences between groups treated with OT, AVP, or placebo in measures of 

attention or arousal [119, 121]. These amnesic effects of OT are consistent with 

direct actions of OT on memory processes, but access to the brain remains 

problematical [102]. OT has also been shown to modulate learning about socially 

relevant stimuli. This suggests that OT within the amygdala plays a role in 

processing negative information about negative stimuli, but OT is particularly 

important for more socially relevant (gaze directed) stimuli. 

 

Self-grooming 

Self-grooming behavior is used as a marker of central nervous system OTR 

activation in mice (or is it all rodents all mammals?); central OT administration 

induces this behavior whereas selective OTR antagonists inhibit it [124]. These 

findings were corroborated by eliciting exaggerated grooming in OT-KO mice with 

OT treatment [125]. 
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Pain 

Central administration of OT elevates pain threshold in rats and mice. 

Specifically, OT increases latency to remove the tail from heat, while an OT 

antagonist inhibits the antinociceptive properties of OT [126-129]. In addition, OT-KO 

mice have significantly increased nociception following stress compared to WT mice 

[102, 130]. OT seems to attenuate nociception by connections from OT neurons in 

the PVN to the dorsal horn of the spinal cord by acting specifically upon a 

subpopulation of lamina II glutamatergic interneurons [130]. This generally elevates 

inhibition at the level of the spinal cord [131]. Furthermore, pain stimulation 

decreases OT concentration throughout the brain, particularly in hypothalamic 

regions, although notably not in the PVN [126, 127]. Interestingly, a recent study 

reports that OT may underlie ethnic differences in pain perception. African American 

women demonstrated significantly lower pain tolerance across tasks and also 

exhibited lower plasma OT levels compared to non-hispanic white women when 

given three types of pain-testing procedures [132]. OT levels are also correlated with 

other measures of pain perception and tolerance, such as norepinephrine and beta-

endorphin levels [102, 132]. 

 

Addiction 

OT has also been reported to play a role in drug addiction. It attenuated the 

development of rapid and chronic morphine tolerance in mice as well as various 

signs of the naloxone-precipitated withdrawal reaction [133]. It also reduced the self-

injected heroin dose in rats [134]. Tolerance or sensitization developed by chronic 
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cocaine administration was inhibited by pretreatment with OT [135]. Central and 

peripheral administration of OT blocked the development of rapid tolerance to 

ethanol, which supports the theory that OT acts on CNS mechanisms to influence 

adaptive responses to drugs [136]. OT likely interferes with the development of 

physical dependence [137]. 

 

Sensorimotor gating 

Disruption of the OT gene (OTKO) made mice more susceptible to the 

psychosis-related effects produced by psychotomimetic drugs. Animals lacking OT 

showed large deficits in the prepulse inhibition of the acoustic startle reflex, which is 

a measure of sensorimotor gating deficits [138]. In addition, peripheral administration 

of OT was able to block amphetamine- and MK-801-induced disruption of PPI in 

rats, suggesting that oxytocin may play an important role in the modulation of 

dopaminergic and glutamatergic regulation of PPI [139]. Restoration of 

psychotomimetic-disrupted PPI is strongly associated with antipsychotic drugs and is 

considered a predictive marker for antipsychotic activity [140]. Members of both the 

typical and atypical antipsychotic families (haloperidol, raclopride, and risperidone) 

consistently restore PPI disrupted by dopamine agonists [140, 141]. In contrast, the 

ability to restore MK-801-disrupted PPI is more selectively associated with members 

of the ‘atypical’ antipsychotic family (risperidone) [141-143]. Based upon its ability to 

restore amphetamine- and dizocilpine-reduced PPI, oxytocin demonstrates a potent 

“atypical”-like antipsychotic profile [139, 141]. 
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OT deficiencies in human disease 

 The demonstrable roles of OT in complex social behavior highlighted above 

suggest that deficits in the OT pathway could contribute to social deficits in humans. 

Indeed, strong evidence shows that disruption of the OT system contributes to 

deficits in reciprocal social interactions, such as pair, parental, and infant 

attachment, characterizing autism spectrum disorders (ASD), schizophrenia, and 

depression [144-146]. Various reports also suggest a link between OT and 

neuropsychiatric disorders, in particular obsessive-compulsive disorder, addiction, 

post-traumatic stress disorder, and anxiety. Importantly, several studies provide 

direct preliminary support for the use of OT in humans for the treatment of some of 

these disorders. 

 

Autism and autism spectrum disorders (ASD) 

One of the key pieces of evidence suggesting a tie between OT and autism is 

the lower plasma levels of OT observed in autistic children and the increase of OT 

with age in normal but not autistic children [147]. ASD children also show alterations 

in the endocrine OT system; OT is synthesized as a prohormone that is sequentially 

processed to peptides. These peptides are the bioactive amidated form (OT) and the 

C-terminal extended peptides, OT-Gly, OT-Gly-Lys and OT-Gly-Lys-Arg, which are 

designated together as OT-X. Autistic children show a significant decrease in 

plasma OT and an increase in the precursor OT-X level (the immature C-terminal 

extended OT form) [148].  
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Several studies indicate that single nucleotide polymorphisms (SNPs) in the 

OT [149] and OTR genes [150-152] are linked with ASD. Specifically, it has been 

reported that common single nucleotide polymorphisms (SNPs) in the 3p24-26 

region containing the OTR gene could confer risks for ASD. There is a significant 

association of two specific SNPs of the OTR, rs2254298, and rs53576 with autism, 

as they have been discovered in a significantly higher rate in autistic subjects in the 

Chinese population. The association has also been observed in a Caucasian sample 

of the United States, but only for the rs2254298 polymorphism [150, 153, 154].  

 Current pharmaceutical therapies used with ASD are palliative, focusing on 

antipsychotics, antidepressants, anxiolytics, and mood stabilizers [155-157]. 

Intravenous OT administration to individuals diagnosed with autism or Asperger’s 

syndrome showed improvements in affective speech comprehension and reduction 

of repetitive behaviors, two of the abnormal core behaviors present in ASD. These 

studies provide preliminary support for the use of OT in humans for the treatment of 

these disorders [158, 159]. 

 

Schizophrenia 

The involvement of OT in this disease is supported by studies that showed 

that CSF OT levels were increased in schizophrenic patients, particularly in those 

taking neuroleptics and that, in drug-free patients; they were significantly higher after 

three weeks of treatment. Drug-induced increase of oxytocin concentrations may be 

of significance in the clinically observed amnesic syndromes and debilitation in 

schizophrenics treated with neuroleptics [160].  Diminished plasma OT levels were 
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also found in schizophrenic patients with neuroendocrine dysfunction and emotional 

deficits. In addition, OT levels predicted schizophrenic patients' ability to correctly 

identify facial emotions [161]. Variations of immunoreactivity towards the OT 

precursor neurophysin in different CNS regions have been observed for certain brain 

areas in untreated schizophrenia, consistent with altered OT function [162]. Social 

perception in primates is largely visual. Face perception has been the primary focus 

for much of human social neuroscience. Deficits in face recognition (prosopagnosia) 

have been reported in patients with schizophrenia and autism [51, 163]. 

 

Depression 

 Some symptoms of depression, in particular, social withdrawal, cognitive 

impairment, appetite modification, and stress reactivity have been related to OT 

[164, 165]. OT neurons were activated in the PVN in patients with major depression 

or bipolar disorder and an increased density of OT-expressing neurons was detected 

in the PVN postmortem of patients with major depression [166]. These findings may 

be associated with activation of the hypothalamic-pituitary-adrenal axis in these 

patients. Recently, a significantly negative correlation was found between plasma 

OT and scored symptoms of depression and anxiety in patients affected by major 

depression [167, 168]. A recent study of depressed women reveals increased 

pulsatile variability and total OT release during an affiliation-focused image task 

[169]. 

Lower plasma OT levels have been linked to higher levels of psychological 

distress and less parental attachment [170]. Increased OT levels postpartum have 
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been associated with elevated mood and decreased anxiety. In humans, breast-

feeding similarly decreases cortisol levels while increasing OT levels and is 

associated with a decrease in negative feelings [171]. Compared with non-lactating 

women, postpartum mothers (2 days after birth) who have received OT during labor, 

just after birth, or were not medicated, have significantly lower scores on the anxiety 

and aggression scales, and higher on the socialization scale, of the Karolinska 

Scales of Personality [172]. This data suggests that both exogenous and 

endogenous OT maintain lower anxiety levels and promote sociability in women 

through the early postpartum period.  

 

Obsessive-compulsive disorder (OCD) 

 OT influences physiological activities, including memory, grooming, maternal, 

and sexual behaviors that may be related to some OCD features. OT receptors have 

been identified in areas of the brain implicated in the patho-physiology of OCD [173]. 

The increase of grooming behavior elicited by OT in rodents is considered a model 

of compulsions, as cleaning behaviors are prototypical symptoms in OCD patients 

[174]. The most consistent data derive mainly from the evidence that pregnancy and 

the postpartum period show an increased risk for the onset of a subtype of OCD, 

which is characterized by contamination obsessions [175, 176]. It was suggested 

that women are vulnerable to the induction of exacerbation of OCD after exposure to 

elevated levels of OT, such as those occurring during pregnancy. Increased levels of 

OT in CSF of adults with OCD were also reported [25, 177]. Conflicting results came 

from the attempts to administer OT to OCD patients to improve avoidance 
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behaviors, such as a patient developing psychotic symptoms and reported 

subjective feelings not reflected in the self-rating questionnaires, [178, 179]. 

 

Addiction 

Cocaine abuse during pregnancy seems to be associated with lower levels of 

OT, depression, and hostility [180]. Ethanol tolerance has been demonstrated in 

mice, but human studies are needed to test the hypothesis that OT is involved in 

alcohol tolerance and cognitive dysfunctions observed in alcoholics [25, 181, 182].  

 

Post-traumatic stress disorder (PTSD) 

 OT attenuates memory consolidation and retrieval, facilitates the extinction of 

an activated avoidance response and decreases avoidance behavior [183]. OT 

administration showed reduced memory retrieval and conditioned response in 

patients with PTSD. It seems that alterations of the OT system following severe early 

stress and abuse experiences may interfere with the brain development and 

increase the subsequent risk of developing PTSD and, more in general, psychiatric 

disorders. The serum activity of the prolyl endopeptidase (PEP), an enzyme that 

cleavages many active behaviorally active neuropeptides including OT, was found to 

be increased in PTSD patients and particularly in those with a concomitant major 

depression: it was, therefore, hypothesized that increased PEP activity might play a 

role in the pathophysiology of behavioral and affective symptoms of PTSD through 

an increased degradation of different neuropeptides [25, 184].  
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Anxiety disorders 

 OT levels are positively related to sociality, calmness, and tolerance in 

mothers and negatively to stress and anxiety [25]. OT seems to be an important 

regulator of anxiety and fear response, mainly with an anxiolytic effect. Recently, 

downregulation of OTR has been related to the pathophysiology of social anxiety 

disorder [25, 111]. 

 
OT as a potential treatment for neuropsychiatric disorders 
 

Prepulse inhibition (PPI) of the startle reflex is a form of sensorimotor gating 

displayed across a variety of species in which the reflexive reaction to a sudden, 

intense sensory stimulus is reduced by a preceding, weaker sensory stimulus. This 

gating process is an attentional mechanism that filters potentially distracting stimuli 

so that attention can be focused on relevant information. Deficits in sensorimotor 

gating are a feature of many psychiatric and neurological disorders including 

schizophrenia and autism spectrum disorders [185-192]. Use of antipsychotics such 

as amperozide (serotonin antagonist) and clozapine (dopamine and partial serotonin 

agonist) significantly increases plasma OT levels, indicating that OT may act as a 

natural antipsychotic [193]. Preliminary results support the hypothesis that OT has 

therapeutic effects on symptoms of schizophrenia and that intranasal oxytocin may 

be an effective method of augmenting established antipsychotic medication [194, 

195]. 
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Disadvantages of OT as a therapeutic tool 

The evidence shown above points to OT as key for the treatment of several 

neuropsychiatry disorders. Unfortunately, there are several reasons to believe that 

OT will not be a successful drug candidate. OT has a half-life of only 4-10 min [196], 

is rapidly degraded in the blood, and it does not cross the blood-brain barrier 

efficiently when administered systemically (due to absence of a specific transport 

system for OT and degradation by brain endothelial enzymes) [197]. It also shows 

cross-reactivity with the vasopressin receptor which is involved in regulation of blood 

pressure and volemia [32]. It is likely that OT would present systemic side effects, as 

its best understood functions in physiology involve stimulation of uterine smooth 

muscle contraction during parturition and milk ejection during lactation, control of the 

estrous cycle length, follicle luteinization, and ovarian steroidogenesis in females, 

sexual arousal and penile erection in males, osmorregulation through excretion of 

water and salts in the kidney, and reduction of heart rate and arterial pressure [17]. 

Given these limitations, the search for small molecule OTR agonists has recently 

been initiated.  

 

Current development of OTR agonists  

 Because of the role of OT in uterine contractions, the majority of reports 

regarding the OTR as a drug target are focused on preventing or stimulating uterine 

contractions and controlling postpartum hemorrhaging [198-201]. OT is the most 

common clinically used OTR agonist and is used to induce labor, control postpartum 

hemorrhage, and facilitate milk letdown. The use of OT for neuropharmacological 

purposes suffers from two major drawbacks. First, OT has a short (2-5 min-1) half 
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life, and second, CNS penetration of the hydrophilic peptide cannot be achieved by 

traditional drug delivery including intravascular or oral administration.  

Both peptide- and small molecule-based OTR agonists have been developed 

[202-205]. Peptide-based OTR agonists are OT analogs that exhibit longer half-lives 

and higher metabolic stability. The best representative molecule of this group is 

carbetocin (see fig.1.4. for structure). It has a lower binding affinity to the OTR (Kd= 

2nM) than OT (EC50= 0.18nM) and significant affinity for the V1a and V2 receptors 

(Kd= 7.3nM and 61 nM, respectively). Carbetocin has been approved in Canada and 

the United Kingdom for the treatment of postpartum hemorrhage after birth. While 

peptide analogs may achieve longer half-lives, the issue of CNS penetration cannot 

be overcome by this approach. These two issues highlight a pressing need for non-

peptide small molecule, selective OT agonists.  

There are only two published reports of small-molecule OT agonists [204, 

206]. Pitt et al. screened a vasopressin-targeted library for OT activity and identified 

two hits. The structural features of these were combined and optimized to generate 

compound 39 (cmpd39), with an EC50 = 33 nM and >25 fold selectivity over human 

V2 receptor and no reported activity at the V1a or V1b receptors (see figure 1.10.). A 

recent patent application by these same authors reported this and some other 

pyrazole-fused benzodiazepines as OT agonists making this scaffold the only 

reported structural class of small molecules with OT activity (US patent # US 

200710117794 A1). Ring et al. at Wyeth Pharmaceuticals have reported anxiolytic 

efficacy of one of these non-peptide OT agonist, but they have provided no structural 

information, no doubt for proprietary reasons, as well as very limited pharmacology 
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information. The limited number of OTR agonists highlights a need to develop new 

small molecules OT agonists that can cross the BBB and are more selective against 

the vasopressin receptors. [196].  

 

Development of small-molecule positive allosteric modulators for OTR and 

therapeutic advantages 

To overcome the cross-reactivity of OT with the vasopressin receptors and 

the consequent side effects, highly selective OTR agonists are required [207, 208]. 

A novel approach to address selectivity is to find molecules that activate OTR 

without binding the OT binding site. It is known that some G-protein-coupled 

receptors (GPCRs) families display high sequence conservation within the 

orthosteric binding site across receptor subtypes, increasing the challenge in 

identifying selective agonists. Recently, allosteric modulators of GPCRs have been 

identified and the approach presents an alternative to agonists, promising new tools 

for the discovery of molecules that can modify receptor activity [208-211]. Allosteric 

modulators mediate receptor activation by interacting with distinct recognition sites 

on the receptor that typically are less conserved, but are conformationally linked to 

the ligand binding site [212]. It is more likely that molecules interacting with allosteric 

sites will be more selective because the ligand binding site is not targeted. This 

selectivity can be achieved through manipulation of the affinity to the sub-type 

receptor or cooperativity between orthosteric and allosteric binding sites.  
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Fig. 1.10. Cmpd39 is the most potent and selective OTR agonist reported up-
to-date.  
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Occupation of allosteric binding sites alters the receptor conformation thereby 

potentiating or inhibiting binding of the primary ligand with subsequent effects on 

intracellular signaling. There are several reports demonstrating the successful 

application of high-throughput screening for the identification of GPCRs allosteric 

modulators. Most of these studies have focused on receptors for classical 

neurotransmitters but some peptide receptors have been studied (CRF1, neurokinin 

NK1, opioid µ, δ). Successes include mGluR2 [213], mGluR4 [214], mGluR5 [215-

218], M4 mAChR [219], M1 mAChR [220], and α7 nAChR [221]. There have been no 

reports of positive allosteric modulators that can modulate OT activity.  

In addition to the expected increase in selectivity, allosteric modulators offer other 

significant advantages of agonist that bind the orthosteric site. Allosteric modulator 

drugs only alter activity of receptors when the endogenous ligand is present. 

Indiscriminant activation of all receptors that bind the primary ligand does not occur, 

markedly diminishing the side effect profile of these drugs. This is known as the 

“ceiling level” to the allosteric effect as the allosteric modulators do not have any 

effect in the absence of orthosteric ligand; they can selectively “tune up” the effects 

of the endogenous ligand while maintaining the normal spatial and temporal profile 

associated with physiological ligands. More over, these modulators do not cause 

receptor desensitization. Although modulators significantly alter the efficacy of 

primary ligands, their maximum effects are constrained within a relatively narrow 

range which in turn diminishes their potential toxicity. Because of these advantages, 

we designed an HTS to identify positive allosteric modulators and agonists of the 

OTR. There seems to be a considerable overlap of the binding sites of structurally 
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diverse allosteric modulators. In addition, we expect a successful outcome of this 

HTS campaign because most of the allosteric modulators predominantly coordinate 

to amino acid residues in TM3, TM5, TM6 and TM7, the same transmembrane 

regions forming the orthosteric site in the biogenic amine family A GPCR, which 

includes the oxytocin receptor [222].  

 

Potential for significant contribution to the development of biotechnology or for 

commercial products derived from biotechnology 

 As is pointed out above, pharmaceutical companies have focused almost 

exclusively on synthesis of OT antagonists for the purpose of blocking premature 

labor. Development of drugs that activate central OTRs is in its early infancy. No 

reports of OTR allosteric modulators have been published. Therefore, it appears that 

development of CNS-penetrating drugs that increase OTR activity is a nearly 

unexplored pharmacotherapeutic frontier.  

 The lack of progress in developing this class of drugs is surprising given the 

broad range of clinically-relevant central effects of OT. The large number of potential 

clinical applications of OT agonists or OTR allosteric modulators suggests that they 

could be enormously successful commercially. These applications include treating 

anxiety, depressive, psychotic and pain disorders with efficacy comparable to 

currently marketed drugs. In addition oxytocinergic drugs may be effective in treating 

social motivation and cognition deficits in schizophrenia, autism spectrum disorders 

and many personality disorders as well as sexual motivation and arousal disorders 

for which there are no currently available pharmacotherapeutic agents. OT-like 



 58 
 

drugs could also be more effective in treating alcohol and drug craving than currently 

available drugs. OT drugs may circumvent complications of anxiolytic, analgesic, 

and antipsychotic drugs in current use. Based on animal studies, OT-like drugs 

would not create the dependence that often occurs with chronic administration of 

sedative/hypnotics or opiates. Also, OT drug treatment of withdrawal would not 

perpetuate sedative/hypnotic or opiate dependence as do many current 

detoxification treatment regimens. Oxytocinergic drugs would be unlikely to produce 

the extrapyramidal and metabolic side effects of typical and atypical antipsychotics.  

 The development of OT agonist or allosteric modulator drugs that penetrate 

the brain also would be a boon to the study of the roles of central OT in normal 

animal and human behavior, emotion and other brain functions as well as CNS 

disorders. In addition to testing the effects of administration of these drugs in 

animals and human subjects, some of these drugs could be suitable for use as PET 

ligands which may permit in vivo localization and quantification of OTRs in the 

developing and adult human brain.  

 

Brief outline of this research work 

The work reported in this thesis focused on the discovery and initial 

characterization of small molecules with potentially useful biological activity. 

Medium- and high-throughput assays were used to identify prospective hits and 

promising compounds underwent further validation. Chapter 2 reports the small-

molecules validated as new G-quadruplex stabilizers and their ability to inhibit 

human telomerase as a prospective approach to treat cancer. Chapters 3 through 5 
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document the identification of novel non-peptide human oxytocin receptor agonists 

and positive allosteric modulators. This research is described in three discrete 

stages. Chapter 3 includes the HTS assay development, validation, and HTS 

campaign. Chapter 4 includes secondary and counter screens, as well as 

cytotoxicity tests. Chapter 5 shows the phenotypic assays performed with the actives 

found in previous instances. Finally, Chapter 6 focuses on the possible therapeutic 

uses that OTR agonists and allosteric modulators could have in the treatment of 

many diseases that the OTR system is involved. The many disorders that this 

system is involved are used in this chapter to delineate the many benefits of 

pharmacological therapy of an OT-like molecule. 



CHAPTER 2 

 

IDENTIFICATION OF NEW G-QUADRUPLEX STABILIZERS 

AND THEIR ABILITY TO INHIBIT HUMAN TELOMERASE 

 

INTRODUCTION 

 

The telomere is a nucleoprotein complex located at the ends of eukaryotic 

chromosomes. It is essential for maintaining the integrity of the genome. For much of 

the cell cycle, telomeric DNA is maintained in a loop structure, which serves to 

protect the vulnerable ends of chromosomes. Many of the key proteins in the 

telomere have been identified, although their interplay is still imperfectly understood 

and structural data are only available for a few. One strand of telomeric DNA 

comprises simple guanine-rich repeats for most of its length, culminating in a short 

overhang of single-stranded sequence at the extreme 3' end that consists of tandem 

repeats of short guanine-rich sequences, such as 5'-dTTAGGG in mammals. This 

can, at least in vitro, fold into a wide variety of four-stranded quadruplex structures 

[223]. Replication of eukaryotic chromosomes by DNA polymerase cannot fully copy 

the ends of telomeric DNA [224], as the polymerase is unable to fully replicate the 

extreme 3′ end of a DNA sequence; this is known as the "end-replication problem". 

Consequently, each replicative cycle of the cell results in the erosion of the parental  
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guanine-rich 3′ end and telomeric DNA progressively shortens in the absence of any 

compensating mechanism. The shortening, by approximately 50–100 bases per 

round of cell division in human cells, leads to a DNA damage response at the 

telomere resulting in cell cycle arrest or cell death [225]. 

It is vital that the noncoding telomeric DNA at chromosome ends be 

replenished to prevent cell cycle arrest or loss of genetic information upon continued 

shortening. In particular, germ-line cells are immortal and have full telomerase 

activity; stem cells are mortal and have some telomerase activity, but not enough to 

replenish all telomeres lost from telomere erosion [226]. This telomere stabilization is 

accomplished by the activation of the reverse transcriptase telomerase, a unique 

DNA polymerase that binds to the guanine-rich 3′ end of telomeric DNA and 

synthesizes the addition of further hexanucleotide repeats onto the end using its own 

endogenous RNA template. 

In contrast to somatic cells, the telomeres of tumor cells do not shorten as a 

result of DNA replication but instead have short yet stable telomeres. In most cases, 

this stabilization is also accomplished by telomerase, which is expressed in over 80–

85% of human tumors even though it is absent in neighboring normal somatic tissue. 

Telomerase thus plays a key role in maintaining the malignant phenotype by 

stabilizing telomere length and integrity. This constitutes one of the key hallmarks of 

cellular immortalization and cancer [227]. The roles of telomerase in ensuring 

cellular immortality and its differential expression in cancer cells compared to normal 

cells has made telomerase an important research focus. This in turn has led to 
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increasing interest in the study of telomeres as potential therapeutic targets in 

oncology [228, 229]. 

G-quadruplexes are higher-order DNA and RNA structures formed from G-

rich sequences that are built around tetrads of hydrogen-bonded guanine bases. 

Potential quadruplex sequences have been identified in G-rich eukaryotic telomeres 

and more recently in non-telomeric genomic DNA, e.g. in nuclease-hypersensitive 

promoter regions. The natural role and biological validation of these structures is 

starting to be explored, and there is particular interest in them as targets for 

therapeutic intervention [15]. The in vivo importance of G-quadruplex-DNA has been 

speculated for quite some time [230]. A growing body of evidence for the biological 

relevance of G-quadruplex-DNA has emerged from recent literature: putative G-

quadruplex forming sequences are thoroughly distributed along the human genome 

(37,000 sequences) [231]. These sequences are particularly found at telomeric 

regions and gene promoters [232]. The putative quadruplex formation correlates with 

gene expression level; and an array of proteins with various functions has been 

shown to interact specifically with G-quadruplexes [233].   

G-quadruplexes are implicated in several biological dysfunctions [234]. In 

particular, the formation of G-quadruplex-DNA at the end of telomeres has been 

reported to obstruct telomerase association and inhibit its activity [235]. Additionally, 

G-quadruplex formation at the telomere may increase genomic instability by 

hampering normal recognition of the telomere by telomere-associated proteins [230]. 

G-quadruplexes could serve as regulators towards cancer cell growth, opening the 

possibility of building novel anti-cancer therapeutic strategies. There is a general 



 63 
 

consensus that G-quadruplex ligands that stabilize the G-quadruplex structure could 

lead to the discovery of novel anti-cancer agents.  
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METHODS AND MATERIALS 

 

Amplification of hTERT and hTR plasmids 

The hTERT- and hTR- expressing plasmids were a gift from Dr. Joaquim 

Lingner (pVan107 and pBS-U1-hTR) [236]. Both plasmids were amplified following 

the MAX Efficiency® DH5αTM Competent cells protocol (Invitrogen, cat# 18258-012). 

The amplified plasmids were purified using a plasmid purification kit (Qiagen, 

Plasmid Maxi kit). The hTERT and hTR expressing plasmids were purified by using 

the high-copy and low-copy plasmid procedures, respectively). After ethanol 

precipitating the plasmids, an agarose gel was run to assess purity of plasmids. UV-

spectroscopy measurements at 260nm were used to quantify the plasmid 

concentrations (Nanodrop information). A restriction endonuclease map was used to 

confirm the identity of the plasmids. The restriction enzymes EcoRI, MluI, and HindIII 

were used for hTERT (New England Biolabs). The hTERT plasmid (1ug) was 

incubated with 1X restriction enzyme buffer (specific for each restriction enzyme), 

and 20 units of EcoRI, 10 units of MluI, or 20 units of HindIII in a total volume of 50 

μl for each reaction. The hTR plasmid (2.4ug) was incubated with 1X restriction 

enzyme buffer (specific for each restriction enzyme), and 20 units of EcoRI, 10 units 

of MluI, or 20 units of EcoRI combined with 10 units of MluI total volume of 50 μl for 

each reaction. The reactions were incubated at 37ºC for 1 hour, followed by five 

minutes incubation at 95ºC to inactivate the enzymes. Comparison of the fragments 

obtained by electrophoresis from the restriction enzyme digestions with the 
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fragments expected from the sequence software allowed for a positive identification 

of the amplified plasmids.  

 

Super-telomerase extract preparation 

Super-telomerase cell extracts were prepared as reported by Cristofari et al 

[236]. Essentially, HEK 293T/17 (2-6x105 cells per well in a 6-well plate) were 

transfected with 4 ug of total plasmid DNA using Lipofectamine 2000 (Invitrogen) 

following manufacturer’s protocol. The mass ratio of hTERT- and hTR- expressing 

plasmids is 1:5 (0.75 ug pVan107 and 3.38 ug pBS-U1-hTR). One day after 

transfection, cells were trypsinized, transferred to a 25 cm2 flask, and grown one 

more day. Two days after transfection, cells (3-4x106) were detached using trypsin, 

washed once in PBS and lysed in 400 μl of Chaps lysis buffer (10mM Tris-HCl pH 

7.5, 1mM MgCl2, 1mM EGTA, 0.5% CHAPS, 10% glycerol, supplemented before 

use with protease inhibitor cocktail (Roche) and 5mM β-mercaptoethanol). After 

incubation at 4ºC for 30 min on a rotator, cell debris was removed by centrifuging 

extracts at 4ºC for 10 min at 13,000xg. The protein content of the supernatant, 

assessed with the Coomassie Plus Assay kit (Pierce), was 1.6 mg/ml. The 

supernatant was aliquoted in portions of 4 µl, quick frozen on dry ice and stored 

without loss of activity for several months at -80ºC. 

 

FRET analysis for the identification of Telomerase inhibitors 

Potential G-quadruplex stabilizers were previously identified in our lab using a 

fluorescence based assay. When the dual- labeled telomeric repeat Fam-21hT-Tam 
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(IDT) folds into a G-quadruplex structure, it brings the ends of the DNA closer 

together, leading to a FRET effect between the donor (fluorescein) and the acceptor 

(tetramethylrhodamine) that are covalently attached to both ends of the telomeric 

repeat. The extent of G-quadruplex formation can be evaluated by measuring the 

emission of light at a specific wavelength. Our lab screened the NCI diversity set 

using this technology and identified twenty-nine compounds, which showed the 

greatest signal quenching at 550nm, as potential hits.  

Several compounds, NSC 12155, 17600, 35489, 95609, 130813, 176327, 

305831, 354961, 357777, and 638432, were obtained from the NCI repository for 

further testing (see figure 2.1.for structures). Compounds were obtained as powders, 

dissolved in DMSO, and diluted to 1.25mM in DMSO for use in subsequent assays. 

 

Telomerase Assay 

Telomerase activity was measured using a modification of a previously 

described direct assay [235]. Each 25 µl reaction contained 50 mM Tris-HCl, pH 8.0, 

50 mM KCl, 1 mM MgCl2, 5 mM β-mercaptoethanol, 1 mM spermidine, 1 µM human 

telomere primer (5’-TTAGGGTTAGGGTTAGGG), 0.5 mM dATP, 0.5 mM dTTP, 2.9 

µM dGTP, 0.17  µM [α-32P]-dGTP (3000 Ci/mmol, 10 uCi/uL; Perkin-Elmer), and 4 μl 

of the super-telomerase cell extract (1.6 mg/ml). Primer extension was carried out at 

30 °C for 90 min. The telomerase inhibitor UR61 was used as a negative control for 

enzymatic activity. After the addition of a 32P-labeled loading control (15 or 115 

nucleotide, 5’-end labeled DNA oligonucleotide, 1000 cpm per reaction), the primer 

extension products were extracted with phenol/chloroform/isoamyl alcohol and 
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ethanol precipitated in the presence of 0.6 M NH4OAc and 35 ng/μl glycogen. 

Products were precipitated at -80 °C in 2.5 vol of absolute ethanol for 30 min 

followed by centrifugation at 22,000xg at 4 °C for 25 min and washing with 2 vol of 

70% ethanol. The final pellets were dissolved in a formamide loading buffer 

containing 40% formamide, 10 mM Tris-HCl, pH 8.0, 10 mM EDTA, 0.05% xylene 

cyanol, and 0.05% bromophenol blue. The products were heated at 95 °C for 5 min 

and resolved on a prewarmed, 0.4 mm thick, 20 x 20 cm, 10% polyacrylamide/7 M 

urea/1x TBE gel. The gel was run at 800 V for 45 min in 1x TBE. After drying the gel 

and exposing it to a phosphorimager screen (Molecular Dynamics) overnight, 

telomerase activity was imaged using a phosphorimager (Molecular Dynamics Storm 

860) and quantified with Image Quant (version 5.2). The intensities of each band in 

each sample were summed and normalized to the loading control. 

IC50 for the most potent compounds were determined by direct telomerase 

assay with five point dose response curves for each compound (50 µM, 5 µM, 0.5 

µM, 50 nM, and 5 nM). Each reaction was run in triplicate per experiment and 

repeated twice. Assay controls included buffer (positive) and 200 nM UR61 

(negative). Each kinetic trace was normalized to the loading control signal to correct 

for loading of the extracts. Data was analyzed using Graph Pad Prism 5 for Windows 

to obtain dose response curves and the IC50 values. 

 

Polymerase stop assay 

The specificity of G-quadruplex binders was characterized using a modification of a 

previously reported polymerase stop assay [7].Primer 5’- AATACGACTCAC 
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TATAG-3’, DNA templates Temp [TTAGGG]4: 5’TCCAACTATGTATAC [TTAGGG]4  

TTAGCCACGCAATTGCTATAGTGAGTCGTATTA-3’ and Temp [TTAGAG]4: 5’-

TCCAACTATGTATAC[TTAGAG]4TTAGCCACGCAATTGCTATAGTGAGTCGTA 

TTA-3’, and all other DNAs were purchased from IDT (San Diego, CA). Single-

stranded oligonucleotides were 5'-end labeled using T4 polynucleotide kinase and 

[γ-32P] ATP at 37ºC. The kinase activity was inactivated by heating at 70ºC for 8 min 

and the labeled primer was purified on a Microspin G-25 column (GE Healthcare). 

Labeled DNA primer (15 nM) and template (10 nM) were annealed in GoTaq buffer 

(1x) with 0.1 mM dNTP by heating at 95ºC for 5 min and were slowly cooled to room 

temperature. Ligands were added at various concentrations (ranging from 50 to 

0.1uM) and incubated at room temperature for 30 min. Taq DNA polymerase (2.5 U) 

was added and the mixtures were incubated at 55ºC for 20 min. The controls used 

were Temp [TTAGGG] 4, Temp [TTAGAG] 4, 1 µM BRACO-19 (a selective G-

quadruplex-binding compound), and primer [237]. Data are reported as the average 

of triplicate experiments. The polymerase extension reactions were stopped by 

adding 2x stop buffer (10 mM EDTA, 10 mM NaOH, 0.1% xylene cyanol, and 0.1% 

bromophenol blue in formamide solution). Samples were heated at 95ºC for 5 min 

and were loaded onto a 10% denaturing polyacrylamide gel. The gel was run at 800 

V for 1 h. After drying the gel and exposing it to a phosphorimager screen (Molecular 

Dynamics) overnight, polymerase activity was imaged using a phosphorimager and 

quantified with Image Quant.  
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Circular dichroism spectroscopy 

CD spectra were recorded on a P-star 180 spectropolarimeter using a quartz 

cell of 1-mm optical path length and scanned at 25ºC using a wavelength of 220-

320nm, a measuring step of 0.5 nm, and a band width of 2.0 nm. The time per point 

was set to 0.25s and the sample period to 25.5 us. The human telomeric 

oligonucleotide d [G3 (T2AG3)3] was purchased from IDT. The DNA was desalted 

using G-25 Microspin columns following manufacturer’s instructions (GE 

Healthcare). The DNA was dissolved in TE (10 mM Tris–HCl, pH 7.5, and 1 mM 

EDTA) at a final concentration of 15 µM in a final volume of 400ul. The TE buffer 

included 10 mM LiCl to prevent precipitation of the DNA from the solution. DNA 

samples were prepared by heating at 95ºC for 5 min and cooling to room 

temperature. DNA samples were titrated with 0.5 mol equivalents of each 

compound. After each addition of ligand, the reactions were allowed to equilibrate for 

at least 15 min to collect the CD spectra. Controls for G-quadruplex formation 

included 50 mM solutions of Na+ or K+. The compound / DNA ratio varied as follows: 

0:1, 0.5:1, 1:1, 1.5:1, 2:1, 2.5:1, 3:1, and 3.5:1. 

 

Specificity assay 

Inhibition of T7polymerase by selected compounds was used to test the 

specificity of the compounds. A modified version of the manufacturer’s protocol was 

used (Ampliscribe T7 Kit, Epicentre). A linearized template DNA with the appropriate 

promoter (50ng/ul) was incubated with 1x T7 reaction buffer, 7.5mM ATP, CTP, 

GTP, and UTP at 95ºC for 5 min and cool down to RT. DTT was then added at 10 
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mM. Then, the test compounds were incorporated at 5 and 50 µM together with the 

Ampliscribe T7 enzyme solution (2 µl). The reaction was incubated at 37ºC for 2 hs. 

DNase (1u) was later added to remove the template DNA for 30 min at 37ºC. The 

products were heated at 95 °C for 5 min and resolved on a prewarmed, 0.4 mm 

thick, 10 x 10 cm, 3.5% polyacrylamide/7 M urea/1x TBE gel. The gel was run at 120 

V for 45 min in 1x TBE. The gel was imaged using a phosphorimager (Molecular 

Dynamics Storm 860) and quantified using ImageQuant. 
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RESULTS AND DISCUSSION 

 

FRET analysis for the identification of telomerase inhibitors 

Potential G-quadruplex stabilizers were previously identified in our lab using a 

fluorescence based assay to screen the NCI diversity set. When the telomeric repeat 

Fam-21hT-Tam (IDT) was stabilized into a G-quadruplex structure, the ends of the 

DNA came closer together, leading to a FRET effect between the donor (fluorescein) 

and the acceptor (tetramethylrhodamine) that were covalently attached to both ends 

of the telomeric repeat. The extent of G-quadruplex formation was evaluated by 

measuring the emission of light at a specific wavelength. Several compounds, NSC 

12155, 17600, 35489, 95609, 130813, 176327, 305831, 354961, 357777, and 

638432, were obtained from the NCI repository for further testing. Figure 2.1 shows 

the structures for these compounds. 

 

Identification of Telomerase inhibitors 

A direct telomerase assay was used to evaluate the effect of compounds 

identified from the G-quadruplex stabilizer screen on telomerase activity. The 

following compounds were initially tested:  NSC 12155, 17600, 35489, 95609, 

130813, 176327, 305831, 354961, 357777, and 638432 (structures shown in figure 

2.1). Figure 2.2. shows the percent inactivation of telomerase for each compound 

calculated by normalizing the signals to the loading controls and comparing the 

areas between the samples and the positive control. The 2’-O-Me oligomer UR61 

(CAGUUAGGGUUAG) was used as a positive control for telomerase inhibition [238].  
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Fig. 2.1. Structures of initial hits identified as G-quadruplex stabilizers in the 

fluorescent based screen of the NCI diversity set. 
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Fig 2.2. Concentration dependence of telomerase inhibition in a direct 
telomerase assay. Compounds were incubated with a telomerase extract and 

percent telomerase activity was calculated. Compounds were added at 10 µM. 

Percent telomerase activity inhibition is reported. (+) Positive control of telomerase 

activity: no inhibitors added. (–) Negative control of telomerase activity: UR61 at 

200nM. LC: 32P-labeled loading control (115 nucleotides; 5’-end labeled DNA 

oligonucleotide).  
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From these compounds, only the compounds that showed 60% inhibition of 

telomerase activity or above were chosen to continue with IC50 studies. These 

compounds were: NSC 12155, 176327, 305831, 354961, and 35489. They 

demonstrated telomerase inhibition of 93, 97, 86, 69, and 63 %, respectively. Figure 

2.3. shows a representative gel that was run to obtain a dose response curve of the 

inhibitors. Signals were normalized to the loading controls (LC) and the areas were 

plotted versus concentration to generate the IC50 values shown in Table 2.1. The 

curve for compound 354961 is shown in figure 2.4. as a representative dose 

response profile. 

 

G-quadruplex ligand specificity is revealed by polymerase stop assay 

Compounds that bind to and stabilize G-quadruplex DNA commonly exhibit 

non specific DNA-binding properties. To test the selective action of the compounds 

found to inhibit telomerase with the human telomeric sequence, a Taq polymerase 

stop assay was used. A primer extension assay was used to measure the drug-

induced stability of the telomeric G-quadruplex formed in the template strand. Two 

types of templates were used: one that can form a G-quadruplex and one that 

cannot as a control. In a typical experiment, the polymerase stop product at the G-

quadruplex-forming site occurs first at the lower drug concentrations in the G-

quadruplex forming template. At higher concentrations product accumulates at the 

primer site, either due to drug binding to the primer/template duplex or another 

unrevealed mechanism of inhibition, preventing polymerase extension [239]. Two 

different concentrations of the compounds found to inhibit telomerase activity were 
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Figure 2.3. Representative gel from NSC 35489 used to obtain a dose response 
curve of the telomerase inhibitors in a direct telomerase assay. Lanes 1-3, 5nM; 

lanes 4-6, 50nM; lanes 7-9, 500nM; lanes 10-12, 5uM; and lanes 13-15, 50uM. (+) 

Positive control of telomerase activity: no inhibitors added. (–) Negative control of 

telomerase activity: UR61 at 200nM. LC: 32P-labeled loading control (115 nucleotide; 

5’-end labeled DNA oligonucleotide).  
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Compound ID IC50 (uM) 

12155 36 

176327 1.5 

305831 7.5 

354961 18 

35489 65 

 
Table 2.1. IC50 for telomerase inhibition in a direct telomerase assay. Only the 

compounds that showed 60% inhibition of telomerase activity or above were chosen 

to continue with these studies. 
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Figure 2.4. Representative concentration dependent profile for compound NSC 
354961 in a direct telomerase assay. Points on curve were run in triplicates. The 

IC50 calculated was 18 ± 2 µM.  
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tested initially in a Taq polymerase stop assay to evaluate their specificity towards 

stabilization of G-quadruplexes. Figure 2.5. shows the results of Taq DNA 

polymerase primer extension on DNA templates containing four repeats of the 

human telomeric sequence, Temp [TTAGGG] 4 [240]. Another DNA template, Temp 

[TTAGAG] 4, contained four repeats of a non-G-quadruplex-forming sequence and it 

was used as a control for selectivity. BRACO-19, a G-quadruplex stabilizing ligand, 

was used as a control. NSC 176327, NSC 12155, NSC 354961, and NSC 305831 

showed polymerase stop products at the G-quadruplex forming site, therefore, these 

compounds were tested further to evaluate if they stabilize G-quadruplexes in a 

dose-response manner. We found that only NSC 176327 and NSC 305831 showed 

specific G-quadruplex stop site products, proving that these compounds inhibited the 

DNA synthesis of Temp [TTAGGG]4 by Taq polymerase selectively. The calculated 

IC50 for the inhibition of DNA synthesis by these compounds is 8 µM and 39 µM, 

respectively. The primer extension reaction using the non-G-quadruplex-forming 

Temp [TTAGAG]4 revealed no G-quadruplex stop products for these two 

compounds. The remainder of the compounds showed stop products revealing non-

specific DNA binding (data not shown). Fig 2.6. and 2.7. show a representative gel 

and the dose response curve obtained for NSC 176327, respectively; data for 

305831 is not shown (this experiment was repeated three times for reproducibility). 

Both, NSC 176327 and NSC 305831 show selectivity for G-quadruplex forming 

templates (see Table 2.2.). These results made it imperative that we investigated 

whether these compounds stabilized G-quadruplex structures. 
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Fig 2.5. Selectivity test of hits for G-quadruplex stabilization by polymerase 
stop assay. Two different concentrations of the compounds were tested initially in a 

Taq polymerase stop assay to evaluate their specificity towards stabilization of G-

quadruplexes. Lane 1: Temp [TTAGGG] 4, G-quadruplex forming template as 

control. Lane 2: Temp [TTAGGG] 4 with 1 µM BRACO-19. Lane 3: Temp [TTAGGG]4 

with 50 µM BRACO-19. Lane 4: Temp [TTAGAG] 4, non G-quadruplex forming 

template as control. Lane 5: Temp [TTAGAG] 4 with 1 µM BRACO-19. Lane 6: Temp 

[TTAGAG] 4 with 50 µM BRACO-19. Lane 7: Labeled primer (P) at 15 nM. Lanes 8-

9: NSC 354961 at 5 and 50 µM. Lanes 10-11: NSC 305831 at 0.5 and 5 µM. Lanes 

12-13: NSC 12155 at 5 and 50 µM. Lanes 14-15: NSC 35489 at 5 and 50 µM. Lanes 

16-17: NSC 176327 at 0.5 and 5 µM.  
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Fig 2.6. Concentration dependent inhibition of DNA synthesis by NSC 176327 
containing the human telomeric sequence [TTAGGG] 4. Polymerase stop 

reaction dose response curve. B: Temp [TTAGGG] 4 with 1 µM BRACO-19. Labeled 

primer (P) at 15 nM. G: Temp [TTAGGG] 4. A: Temp [TTAGAG] 4. A5: Temp 

[TTAGGG] 4 with NSC 176327 at 5 µM. NSC 176327 concentrations are: 0.1, 0.25, 

0.5, 2.5, 5, 10, 25, and 50 uM, respectively. 

B P G A A5 
NSC 176327 

Full-length 
product 

G- quadruplex 
stop site 

Primer 
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Fig 2.7. Concentration dependent inhibition of DNA synthesis by NSC 176327 
containing the human telomeric sequence [TTAGGG] 4. Dose response curve of 

NSC 176327: the IC50 reported is 8 µM for the inhibition of DNA synthesis in the 

polymerase stop assay. 

 

 

 

Compound ID 

 

Temp [TTAGGG]4 

G-quadruplex-forming 

 

Temp [TTAGAG]4 

non-G-quadruplex-forming 

176327 8 --- 

305831 39 --- 

 
Table 2.2. IC50 calculated for the inhibition of DNA synthesis in the polymerase 
stop reaction. The primer extension reaction using the non-G-quadruplex-forming 

Temp [TTAGAG]4 revealed no G-quadruplex stop products. The results are 

expressed in μM.  
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Evaluation of G-quadruplex stabilization by circular dichroism 

Circular dichroism is used to determine binding mode and affinity of ligand-

DNA interactions. It is a more accessible technique that serves as a low-resolution 

complement to NMR and X-ray diffraction methods. Ligand-DNA interactions can be 

studied by virtue of the interpretation of induced ligand CD signals resulting from the 

coupling of electric transition moments of the ligand and DNA bases within the 

asymmetric DNA environment [241, 242]. 

The observation of an ligand-induced change in CD spectrum of a DNA 

sample is indicative of a ligand-DNA interaction [242]. In addition, CD can assist in 

determining the presence of G-quadruplexes and can help diagnose the type of G-

quadruplex structure present [243]. CD measures the difference in absorbance of 

circularly polarized light by a chromophore in an asymmetric environment and can 

be used to examine the structure of DNA in solution. For example, parallel and 

antiparallel G-quadruplexes display characteristic patterns of peaks in the 240-320 

nm wavelength range, which are not present in linear DNA [244]. This technique can 

be used to confirm the presence of G-quadruplexes in DNA and discriminate 

between parallel and anti-parallel strand orientation [245]. The presence of the Na+ 

cation generally promotes the formation of an anti-parallel G-quadruplex in human 

telomeric DNA, while the K+ cation favors the parallel propeller and hybrid structures 

(figure 2.8) [246].  
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Fig 2.8. Characteristic pattern of peaks for Na and K solutions and their 
respective G-quadruplex shapes. The CD spectra were obtained as explained in 

the Methods section. A. A 50mM Na+ solution (blue) shows characteristic positive 

peaks at 295 and 245 nm and a negative peak at 265nm. A 50mm K+ solution (red) 

shows positive peaks at 293 and 253nm. B. Antiparallel folding of the G-quadruplex, 

typical of a Na+ solution (basket-type structure). C. Parallel folding seen in K+ 

solutions (hybrid: 3 + 1, propeller-type structure).  
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Compounds NSC 176327 and 305831 were the only two compounds that 

showed selective formation of G-quadruplex products in the polymerase stop assay 

(Figure 2.1.). Therefore, the interactions of these compounds with repeats of human 

telomeric DNA were monitored using CD spectroscopy. The human telomeric 

oligonucleotide d[5’-G3(T2AG3)3-3’] alone showed a major positive band at 250 nm, 

and a minor band at 295 nm (Fig 2.8.A. and 2.9.A.) [7]. To determine the 

stoichiometry of the binding of both compounds to human telomeric G-quadruplexes, 

titrations of these ligands into a fixed concentration of human telomeric DNA were 

tested. 

The titration of increasing amounts of NSC 176327 (0.5 to 6 mol equivalents) 

with a fixed concentration of human telomeric DNA revealed a major negative peak 

at 253 nm and the disappearance of the positive peak at 295nm present before (Fig 

2.9.A.). This suggests the ligand-induced formation a new structure, presumably a 

G-quadruplex, although it is not clear what conformation is favored. This steep 

decrease of the 253 nm band stopped when a 4:1 ratio of NSC 176327 to DNA was 

reached (fig 2.9.B.). 

Addition of 0.5 to 4 mol equivalents of compound 305831 resulted in a new 

spectrum with a significant increase in the 293 nm peak and a small positive peak at 

283 nm. This profile is similar to the one seen in a K+ solution (fig 2.8), suggesting 

the formation of a propeller-type structure. This positive band increased until a 1.5:1 

ratio of NSC 305831 to DNA was reached (fig 2.10.A. and B.). 
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Fig 2.9. CD spectra and stoichiometry analysis of NSC 176327. A. Titration of 

NSC 176327 with human telomeric DNA shows a major negative peak at 253nm and 

the disappearance of the positive peak at 295nm present before. B. Stoichiometry 

analysis of the titration shows that the spectrum equilibrates at a ratio of 4:1.  

A 

B 
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Fig 2.10. CD spectra and stoichiometry analysis of NSC 305831. A. Titration of 

NSC 305831 with human telomeric DNA presents an increase in the 293 nm peak 

and a small positive peak at 283 nm. C. The ratio for spectrum equilibrium is 1.5:1 

for this compound. 

B 
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The data in this chapter demonstrates that a G-quadruplex formation assay 

can accurately identify G-quadruplex binding compounds that inhibit telomerase. 

Specifically, the work confirmed that NSC 176327 and NC 305831 are selective G-

quadruplex stabilizers of the human telomeric sequence. Our CD data shows that 

NSC 305831 favors the formation of a propeller-type structure in a molar ratio of 

1.5:1. NSC 176327 seems to produce a mix of G-quadruplex formations, and the 

ratio was 4:1. Investigation of the literature confirms our findings as analogs of NSC 

305831 have been reported as stabilizers of G-quadruplex structures [241]. For NSC 

176327, we found that the structure belongs to the natural plant product ellipticine. 

This compound is reported to bind to DNA with high affinity (106 M-1). The literature 

delineates an interaction between ellipticine and telomerase, suggesting that this 

takes place through DNA binding. We have strengthened this hypothesis by showing 

strong data that confirms that this small molecule interacts directly with telomeric 

DNA and stabilizes the G-quadruplexes structures [247]. 

Targeting G-quadruplex-DNA represents a challenge since its particular DNA 

arrangement is polymorphic in nature and is not abundant as compared to duplex-

DNA. The advances made in the design and the synthesis of G-quadruplex ligands 

convinces us that the development of compounds able to discriminate not only G-

quadruplex from duplex-DNA, but between the various structures of G-quadruplexes 

is imminent [236]. 



 87 
 

FUTURE PLANS 

 

We have confirmed that a HTS for molecules that can induce G-quadruplex 

formation can identify new telomerase inhibitors. There are several directions this 

research can be directed in the future. One tract would be to investigate ellipticine 

and its analogs in an effort to demonstrate the role of telomere biology in ellipticine 

pharmacology and to optimize ellipticine for selective anti-cancer effects. Also, it 

would be worth to screen larger, more diverse libraries of compounds to enrich the 

known chemical space of G-quadruplex interacting structures.   

A number of toxic effects have been shown for ellipticine, but because this 

compound shows amenability for structural modification, it is possible to apply 

rational drug design to improve its anti-cancer quality, or at least, reduce its side 

effects. A number of successful ellipticine analogs have been designed and 

synthesized with improved toxicities and anticancer activities. In addition, the 

identification of NSC 305831 as a compound that selectively targets quadruplex 

structures will allow this molecule to be used as a tool to unravel the roll of 

telomerase in cancer [241]. Considerable research efforts have been directed 

towards gaining a greater understanding of the mechanism of action of these 

compounds and their analogs that will aid further in the optimization of drug design 

[247]. The use of G-quadruplex ligands as tools to evaluate the therapeutic potential 

of telomeres and to help elucidate the complex interrelations with the telomeric-

interacting proteins such as telomerase and capping proteins, will facilitate the 
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understanding of the roll of these ligands on cancer cells and how they induce 

specific responses, such as telomere instability and focused DNA damage [236]. 



CHAPTER 3 

 

VALIDATION AND OPTIMIZATION OF  

MEDIUM TO HIGH-THROUGHPUT CELL- BASED FLUORESCENT ASSAYS 

 

INTRODUCTION 

 

High-throughput screening of GPCRs 
 
 

GPCRs transduce extracellular stimuli to intracellular responses via the 

coordinated action of a variety of proteins and intracellular messenger pathways. 

Many, if not all, of these pathways can be used in a variety of high-throughput 

assays [248] . Truly high-throughput assays have been developed to carry out the 

assays on a miniaturized scale. Assays like cAMP and calcium mobilization have 

been successfully scaled down to a 1536-well format [249, 250]. In the academic 

setting, 96-well and 384-well formats are used, with a corresponding decrease in 

throughput. 

This throughput is still much higher than conventional radioligand binding 

assays. It affords the opportunity to distinguish agonists, partial agonists, inverse 

agonists, allosteric modulators, and antagonists, and it does not present the 
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disadvantages of using radioactivity. For example, in calcium mobilization assays, 

agonists can be distinguished from antagonists and allosteric modulators in ‘dual-

addition’ experiments, in which test compounds are added first, and known agonists 

are added in a second addition. In such experiments, test compounds that are 

agonists activate a calcium response after the first addition, compounds that are 

antagonists inhibit the agonist response after the second addition, and compounds 

that are positive allosteric modulators enhance the agonist response after the 

second addition [249]. 

 

Functional assays to screen GPCRs 

In contrast to radioligand-binding assays, functional assays produce ligand 

profiles that reveal how ligands modulate GPCR signal transduction (i.e. agonist 

versus partial agonist). Functional GPCR screening relies on the detection of second 

messengers, which are produced as a result of receptor specific signal transduction 

pathways. Typically, Ca2+ is measured using fluorometric dyes and analyzed using 

automated fluorescent plate readers [251]. Although the activation of many GPCRs 

will not induce a Ca2+ signal, the use of chimeric and/or promiscuous G proteins 

enables most GPCRs to couple to Ca2+ [252, 253]. Multiple downstream signaling 

events can occur following receptor activation, even among members of a single 

receptor family, consequently it is difficult to predict which of the signaling events is 

relevant physiologically and therefore useful as a readout. This is particularly 

problematic when searching for agonists and partial agonists because chemically 
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distinct agonists frequently elicit functionally distinct readouts (a phenomenon 

referred to as ‘functional selectivity’ or ‘agonist-directed trafficking’) [254-256].  

One ubiquitous feature of signaling through GPCRs and other cell surface 

receptors is the short-term and long-term loss of cellular sensitivity following 

presentation of stimulus, a phenomenon referred as desensitization [257]. Some of 

the effector proteins that are activated by many GPCRs, including GRKs and second 

messenger-activated protein kinases, take part in feedback regulation of GPCR 

signaling. Typically, activation of a GPCR leads to activation and inhibition of specific 

signaling pathways in the cell, short-term desensitization mediated by 

phosphorylation of GPCRs by GRKs followed by β-arrestin binding to GPCRs that 

uncouple the receptor at the plasma membrane from the G-protein, and endocytosis 

of the receptor followed by post-endocytic sorting of the receptor either back to the 

plasma membrane (receptor recycling) or to lysosomes for degradation. Short-term 

desensitization may also involve phosphorylation of GPCRs by second messenger-

dependent protein kinases; this uncouples GPCRs at the plasma membrane from G 

proteins. Long-term desensitization may include one or more of the following 

processes: down-regulation of receptors and/or downstream components in the 

signaling pathway (e.g., G-proteins and effector proteins) by proteolytic protein 

degradation in lysosomes or at the plasma membrane, decreased synthesis of 

receptor protein and/or downstream proteins, and enhanced mRNA degradation. 

The extent to which each of these processes is responsible for desensitization is cell 

type and receptor specific [257] . Fig 3.1. shows the GPCR signaling pathways that 

can be used to screen, including the regulation of GPCRs by β-arrestins. 
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Fig 3.1. GPCR signaling pathways of interest for HTS, including the regulatory 
pathway signaled by β-arrestins. Agonist stimulation. Stimulation of GPCRs by 

agonists leads to activation of multiple signaling pathways, including those involving 

second messengers such as cAMP, IP3, and Ca2+. GPCRs in the plasma membrane 

couple to these pathways via G proteins that link the receptors to enzymes such as 

adenylyl cyclase (AC) and phospholipase C (PLC) or ionic conductance channels 

including the Ca2+ and K+ channels. PKA, protein kinase A; PKC, protein kinase C. 

Prolonged agonist stimulation. Prolonged stimulation of the receptor leads to 

recruitment to the cell membrane of β-arrestin. This leads to uncoupling of the 

GPCR from G proteins and the second messenger pathways and leads to three 

subsequent and parallel processes. β-arrestin couples the GPCR to SRC, which can 

link the receptor to MAPK. This creates alternative signaling via the GPCR, in 

contrast to its G protein-mediated functions. β-arrestin also serves as an adaptor 

linking the receptor to clathrin-coated vesicles, which internalize the receptor. This  

Identification of lead candidates can lead to targeting the receptor to degradation 

in the proteosome. Picture adapted from [258]. 
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Due to the limited availability of structural data on GPCRs, the design of 

ligands for this family still heavily depends on ligand based design techniques. For 

many GPCRs, the natural ligand can provide a good starting point in the lead 

identification. Especially for peptide binding GPCRs, screening of diverse or focused 

compound libraries still remains a successful lead identification, which has yielded 

the discovery of several potent GPCR ligands. Such compounds have been 

classified frequently as functional mimetics, as they elicit agonist or antagonist 

activity but are not necessarily structural homologues. Nonpeptide receptor agonists 

are now becoming known in peptide classes where initially only nonpeptide 

antagonists were identified [257]. 

 

Quantification of second messengers for the identification of hits 

 Improving hit specificity and sensitivity in automated or semi-automated 

processes is key to identify candidate hits rapidly and accurately [6]. Diverse 

technologies have been developed for this purpose, including Ca2+, inositol 

phosphate, and β-arrestin readouts. Our efforts mainly focused on the Ca2+ 

mobilization technology to take advantage of this second messenger that is intrinsic 

to OTR activation. β-arrestin quantifying tools provide information that is 

independent of the type of G-protein bound, hence this technology is generic to 

virtually all GPCRs. Several dyes have been implemented to increase signal-to-

background ratio, and reduce false positives for the fluorescence-based intracellular 

calcium mobilization assays used in the FLIPRTETRA® system. In this chapter, the 
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validation of three different dyes used for different stages of the screening campaign 

is described. 

The FLIPR Calcium 4 Assay Kit from Molecular Devices (Sunnyvale, CA) is a 

no-wash, mix-and- read, calcium mobilization assay that utilizes a novel masking 

dye technology that significantly lowers background fluorescence and improves 

signal-to-noise without washing the cells. This kit has a greater light extinction in the 

extracellular solution due to the novel masking dye (fig 3.2.). One source of potential 

fluorescence outside the cells is extrusion of the indicator out of the cell by organic 

anion transporters. To reduce this artifact, probenecid is used to inhibit this transport 

and reduce the baseline signal. 

For the optimization step of the screening campaign, the Fluo-4 NW Calcium 

assay kit from Invitrogen (Carlsbad, CA) was utilized. Fluo-4 is a fluorescent Ca2+ 

indicator available as a cell-permeant ester. This kit requires neither a wash step nor 

a quencher dye. The elimination of the wash step results in lower variability and 

higher Z´ values and the possibility of testing activity in non-adherent cell lines. The 

fluo-4 NW indicator is nonfluorescent and stable in pH 7–7.5 buffer for several hours, 

so spontaneous conversion to the Ca2+-sensitive form is not a significant source of 

background fluorescence. Contributions to baseline fluorescence by the growth 

medium (e.g., esterase activity, or proteins interacting with receptors of interest) are 

eliminated by removing the medium prior to adding the indicator dye to the wells. A 

water-soluble form of probenecid that is easy to dissolve in buffer and safer to use 

than the free acid that requires 1M NaOH to dissolve, is provided with the kit [259]. 
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Fig 3.2. Graphic representation of the FLIPR Calcium 4 Assay Kit. Increase in 

cytosolic Ca2+ can be detected by FLIPR microplate readers using the calcium-

sensitive dye indicator. Scheme borrowed from [260]. 
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In order to proceed with the HTS in a 1536 well plate format, a homogeneous 

assay needed to be validated. Screen Quest™ Fluo-8 NW Calcium Assay Kit 

provided a fluorescence-based assay for detecting the intracellular calcium 

mobilization without the removal of the cell media prior to the dye loading step. Once 

inside the cell, the lipophylic blocking groups of Fluo-8 AM are cleaved by non-

specific cell esterases, resulting in a negatively charged fluorescent dye that stays 

inside cells [261]. 

Another technology was also explored to assess its robustness in GPCR 

screening. The direct analysis of GPCR activation via β-arrestin recruitment could 

provide a simple assay protocol to identify multiple pharmacologies (agonists, 

antagonists, allosteric modulators, etc.). The β-arrestin signaling pathway is generic 

to virtually all GPCRs. GPCR mediated β-arrestin recruitment occurs independent of 

G-protein coupling status. Agonist stimulated G protein-coupled receptors (GPCRs) 

initiate cell responses by modulating the activity of effector molecules via activation 

of specific G proteins. Following this signaling event, activated GPCRs undergo 

phosphorylation by specific GPCR kinases (GRKs). This phosphorylation promotes 

the binding of arrestin molecules to the GPCR, which in turn uncouples the receptor 

from the G-protein leading to receptor desensitization, a temporary state during 

which the system becomes refractory to further stimulation [262]. The DiscoveRx 

PathHunter technology offers a generic assay to investigate interactions between β-

arrestins and activated GPCRs. The direct measure of GPCR activation by detection 

of β-arrestin binding to the GPCR of interest and can be used with any Gi-, Gq-, or  
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Gs-coupled receptor. This assay takes advantage of the β-galactosidase enzyme 

fragment complementation depicted in fig 3.3.  

 There is a pressing need for small molecules that selectively activate the OT 

system within the CNS. These small molecules will serve as new chemical tools to 

elucidate the complex roles for oxytocin in social behavior, and they will provide new 

potential leads for a drug discovery campaign in the treatment of specific 

neuropsychiatric disorders. This stage of the project was focused on both the 

identification of agonists and positive allosteric modulators of the OTR through a 

HTS campaign.  
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Fig 3.3. β-galactosidase enzyme fragment complementation. β-arrestin is fused 

to an large N-terminal deletion mutant fragment of β-gal, the enzyme acceptor (EA). 

The GPCR of interest is fused to a small weakly complementing fragment of β-gal, 

termed ProLink™ (PK).  In cells that stably express these fusion proteins, ligand 

stimulation results in the interaction of β-arrestin and the Prolink-tagged GPCR, 

forcing the complementation of the two β-gal fragments and resulting in the 

formation of a functional enzyme that converts substrate to a detectable 

chemiluminescent signal. Picture borrowed from [263]. 
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METHODS AND MATERIALS 

 

Materials. All reagents were ACS reagent grade and used without further 

purification unless otherwise noted. Oxytocin, vasopressin (Sigma), and carbetocin 

(Bachem) were purchased in the powder form. Compound 39 was synthesized by 

the Center for Integrative Chemical Biology and Drug Discovery at UNC-CH. Several 

dyes for calcium mobilization assays were obtained from commercial sources: 

FLIPR Calcium 4 Assay Kit (Molecular Devices), Fluo-4 NW Calcium Assay Kit 

(Invitrogen, Carlsbad, CA), and the Screen Quest™ Fluo-8 No Wash Calcium Assay 

Kit (ABD Bioquest, Sunnyvale, CA).  

The NCI Diversity set was obtained from the Developmental Therapeutics 

Program of the NCI/NIH’s repository; it consisted of 1,900 structurally diverse small 

molecules that were provided in 100% DMSO at 10mM. Aliquots of the library were 

taken and these were diluted to a final concentration of 20 µM (2x) using assay 

buffer. The final DMSO concentration was at 1%. 

The Prestwick and a portion of the Asinex Gold Libraries were provided by 

the Biomanufacturing Research Institute and Technology Enterprise (BRITE Center 

at NCCU). The Prestwick Library consisted of 1,100 compounds that are mostly 

FDA-approved drugs. Aliquots of the library were taken and these were diluted to a 

final concentration of 20 µM (2x) using assay buffer. The final DMSO concentration 

was below 1%. A portion of the Asinex Gold library was screen in the medium-

throughput screen. It consisted of 29,000 structurally diverse compounds.  
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The stably transfected CHO-hOTR, CHO-V1a, CHO-V1b, CHO-V2, and CHO 

wild type cells were kindly provided by the NIMH Psychoactive Drug Screening 

Program at UNC-CH. Reagents used for cell culture were purchased from Gibco-

Invitrogen. The PathHunter™ CHO-K1 OTR β-Arrestin Cell Line, PathHunter™ 

Detection Kit, and the PathHunter™ eXpress β-Arrestin GPCR Assays were 

obtained from DiscoveRx (Fremont, CA). 

 

Cell culture. Stably transfected CHO-hOTR and CHO-V1a cells were grown in 

OT/V1a media that consists of: Hams F-12, 400 µg/ml geneticin sulfate (G-418), 10% 

calf serum, 15mM HEPES, and 50 U of penicillin/ 50 µg of streptomycin. The CHO- 

V1b /V2 media was made with Hams F-12, 150 μg/ml zeocine, 10% calf serum, 15 

mM HEPES, and 50 U of penicillin/ 50 µg of streptomycin. CHO wild type cells were 

grown in DMEM, 10% fetal bovine or calf serum and 50 U of penicillin/ 50 µg of 

streptomycin. All the cell lines were incubated at 37°C and 5% CO2 in 75cm2 flasks 

until 80% confluency was reached. At that point, they were either passaged to new 

flasks to allow expansion of growing cells or they were plated to be used in the 

assays. Cells were incubated with 0.05% Trypsin –EDTA at 37°C for 5 minutes for 

dissociation. The stably transfected cell lines were used in the assays until they have 

reached a passage number of 20, after which they were discarded as they started to 

show a decrease in response maybe due to receptor expression inefficiency. In this 

case, a new batch of fresh cells from stocks stored in liquid nitrogen was grown. 
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Cell plating for screen. Stably transfected cells were plated on uncoated 96 or 384 

well tissue culture polystyrene plates (Greiner Bio-one, Monroe, NC). The plating 

densities were 40,000 cells/well in 100 µl of media for the 96 well plates, or 15,000 

cells/well in 20 µl of media for the 384 well plates. Cells were at 37°C and 5% CO2 

for 18-24 hours before starting the assay to allow cells to adhere. This cell growth 

protocol was optimized to ensure similar cell conditions and health throughout the 

screening campaign. 

 

OT dose response curve preparation. OT powder was dissolved in DMSO to a 

final concentration of 1mM. This stock solution is stable at -20ºC for several months. 

Each day, an OT dose response curve was determined prior to initiating the screen 

to determine EC20 concentrations and to compare inter-day results.  

For the 96 well-plate format, a 16 point curve was prepared as 10x serial 

dilutions of the stock with initial concentrations starting at 10 µM and 3 µM, plating 

each concentration by triplicate as shown in Fig 3.4. Only half of the plate was used 

for the curve. For the 384 well-plate format, a 16 point curve was prepared as 

explained above. Each concentration was plated six times as shown in Fig 3.5. 
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 1 2 3 4 5 6 

A 10-12 10-12 10-12 3x10-12 3x10-12 3x10-12 

B 10-11 10-11 10-11 3x10-11 3x10-11 3x10-11 

C 10-10 10-10 10-10 3x10-10 3x10-10 3x10-10 

D 10-9 10-9 10-9 3x10-9 3x10-9 3x10-9 

E 10-8 10-8 10-8 3x10-8 3x10-8 3x10-8 

F 10-7 10-7 10-7 3x10-7 3x10-7 3x10-7 

G 10-6 10-6 10-6 3x10-6 3x10-6 3x10-6 

H 10-5 10-5 10-5 3x10-5 3x10-5 3x10-5 

 

 Fig 3.4. OT dose response curve map for 96 well plate format. Final 

concentrations are expressed in M. Only half of a plate is used for this step. 
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 1 2 3 4 5 6 

A 10-12 10-12 10-12 10-12 10-12 10-12 

B 3x10-12 3x10-12 3x10-12 3x10-12 3x10-12 3x10-12 

C 10-11 10-11 10-11 10-11 10-11 10-11 

D 3x10-11 3x10-11 3x10-11 3x10-11 3x10-11 3x10-11 

E 10-10 10-10 10-10 10-10 10-10 10-10 

F 3x10-10 3x10-10 3x10-10 3x10-10 3x10-10 3x10-10 

G 10-9 10-9 10-9 10-9 10-9 10-9 

H 3x10-9 3x10-9 3x10-9 3x10-9 3x10-9 3x10-9 

I 10-8 10-8 10-8 10-8 10-8 10-8 

J 3x10-8 3x10-8 3x10-8 3x10-8 3x10-8 3x10-8 

K 10-7 10-7 10-7 10-7 10-7 10-7 

L 3x10-7 3x10-7 3x10-7 3x10-7 3x10-7 3x10-7 

M 10-6 10-6 10-6 10-6 10-6 10-6 

N 3x10-6 3x10-6 3x10-6 3x10-6 3x10-6 3x10-6 

O 10-5 10-5 10-5 10-5 10-5 10-5 

P 3x10-5 3x10-5 3x10-5 3x10-5 3x10-5 3x10-5 

 

Fig 3.5. OT dose response curve map for 384 well-plate format. Final 

concentrations are expressed in M. OT concentration in original plate was 2x for the 

Fluo4-NW dye and 5x for the Fluo-8 NW dye. Only one quarter of a plate is used for 

this step. 



 104 
 

Sample compounds and control dilutions preparation. Dilutions of drugs and 

controls (OT at maximum concentration) for first addition of protocol were made in 

assay buffer as 2x stocks. The final DMSO content was below 1%. Oxytocin dilutions 

(OT at maximum concentration and EC20) for second addition of protocol were made 

in assay buffer as 4x stocks. The negative (min) control was the assay buffer. The 

positive controls are the EC20 control, which was prepared according to the values 

obtained daily from the dose response curve, and the maximum concentration of OT 

that was 10 µM. All sample compounds were tested initially at a final concentration 

of 10 µM.  

 

Data collection and analysis. Data was collected using ScreenWorksTM 2.0.0.22 

software (Molecular Devices) and analyzed using Graph Pad Prism 5 for Windows. 

Each kinetic trace was normalized to the initial fluorescence intensity to correct for 

loading of the cells, and it was reported as % normalized activation. This parameter 

was calculated as (sample value – min control value) / (max control value – min 

control value). For agonist calculations (first dispense), the no OT control was used 

as the minimum control. For the positive allosteric modulator calculations, the 

minimum control was the value obtained for OT at EC20. The maximum control was 

OT at maximum concentration for both calculations.  

 

Definition and selection of initial hits. Compounds from the primary screen were 

considered actives and were selected to undergo further testing according to the 

following criteria: 50% or more normalized % activation compared to the average 
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normalized % activation for agonists and for positive allosteric modulator. Actives 

were briefly examined to discard false positives based on fluorescence readout, 

reactivity, promiscuity of compounds found in PubChem, and compounds that 

presented adverse effects reported in the literature. A large number of actives could 

provide a substantial amount of data that is challenging to handle. In this case, we 

chose those actives that fell above average normalized % activation + 1 sd 

calculated from all the actives. 

 

Validation of fluorescence-based intracellular calcium mobilization assay for 

the identification of hOTR agonists and allosteric modulators in a 96 well-plate 

format. 

 

Dye preparation. To validate an OTR assay for HTS, the FLIPR Calcium 4 Assay 

Kit (Molecular Devices) was first used. The preparation of the dye (component A) 

was conducted according to the manufacturer's instructions. In short, component A 

was dissolved in 10 ml of 1x Hanks’ Balanced Salt Solution and 20 mM HEPES, pH 

7.4. This stock solution can be stored at -20ºC for several months. The working 

solution of the dye has to be prepared daily by dissolving 1 ml of the stock solution in 

30 ml of assay buffer made as follows: 1x HBSS (138 mM NaCl, 5.3 mM KCl, 1.3 

mM CaCl2, 0.49 mM MgCl2, 041 mM MgSO4, 0.44 mM KH2PO4, and 0.34 mM 

Na2HPO4), 20 mM HEPES, 2.5 mM Probenecid, corrected to pH 7.4 with NaOH 10 

N. The dye working solution was kept in the dark at room temperature or 37 ºC 

throughout the day. 
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Cell preparation. Media from plated cells was aspirated and replaced with 30 µl of 

fresh dye working solution. Cells were incubated with the dye for 45 min at 37 ºC 

and then at RT in the dark for another 15 min. 

 

OT dose response curve, sample compound, and OT control dilutions 

preparation. The dilutions were made as explained before. These dilutions were 

plated in a 96 well plate according to plate map in Fig 3.6. 

 

Fluorescence-based intracellular calcium mobilization assay: 96-well plate 

format. A  FLIPRTETRA® system (Molecular Devices, Sunnyvale, CA) was used to 

read fluorescence (excitation wavelength: 470-495nm, emission wavelength: 515-

575nm) in each well every 1 s for 30 sec, to establish a baseline reading. After this 

period, the FLIPRTETRA® transferred 30 µl of the 2X compound solution from the 

compound plate to the cell plate (first addition). Readings were made every 1s for 

5min to identify possible hOTR agonists. A second dispense transferred 20 µl of 4x 

OT at the EC20 obtained from that day’s dose response curve from the OT plate to 

the cell plate, and readings were made every 1 s for 3 min (see Table 3.1.). This 

portion of the assay was designed to identify possible hOTR positive allosteric 

modulators. The SOP for this assay is represented in Figure 3.7. Each plate was run 

twice; the compounds tested belonged to the same drug plate. Data collection and 

analysis was performed as explained above.   
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 1 2 3 4 5 6 7 8 9 10 11 12 
A Min           Max 

B Min           Max 

C EC20           EC20 

D EC20  Test compounds at 2x (20 µM )  EC20 
E EC20           EC20 
F EC20           EC20 
G Max           Min 

H Max           Min 

 
Fig 3.6. Plate map for 96 well plate format low throughput screen. Max, 

Oxytocin at 10 µM. Min, assay buffer. EC20, Oxytocin at 20% according to daily dose 

response curve. 

 

Figure 3.7. Standard Operating Procedure for High Throughput Screen Assay. 

 

Dispense cells in wells 
with growth media 

16-24 hs 

37°C 
5% CO2 

Remove media from cells
Add assay loading buffer with dye 

xx min 37°C
xx min RT 

Dilute compound sc.
 x fold 

Measure Fluorescence 

30s 

Baseline 

FLIPR adds compounds 

5min 

Agonist 

FLIPR adds OT 

Allosteric
 Potentiator 

3min 
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Optimization and execution of fluorescence-based intracellular calcium 

mobilization assay for the identification of hOTR agonists and allosteric 

modulators for a 384 well-plate format. This stage of the screening campaign was 

performed at the BRITE center at NCCU. 

 

Dye preparation. The dye recommended by the screening center was Fluo-4 NW 

Calcium Assay Kit (Invitrogen, Carlsbad, CA). The preparation of the Fluo4-NW dye 

mix (component A) was done according to instructions from the manufacturer. The 

assay buffer consisted of 1X HBSS, 20 mM HEPES. A 250mM stock solution of 

probenecid was made by adding 1 ml of assay buffer to one vial of water soluble 

probenecid (Component B). This solution could be stored at ≤ –20°C for up to 6 

months. To make the dye mix, 100ml of assay buffer and 1ml of the probenecid 

stock solution were added to one bottle of Component A. This 1X dye loading 

solution was sufficient for ten microplates, and the final probenecid concentration 

was 2.5 mM. The dye working solution was kept in the dark at room temperature 

throughout the day and then discarded. 

 
Cell preparation. Media from plated cells was discarded and replaced with 20 µl of 

fresh dye working solution. Cells were incubated with the dye for 45 min at 37 ºC 

and then at RT in the dark for another 15 min. 

 

OT dose response curve, sample compound, and OT control dilutions 

preparation. The dilutions were made as explained before. These dilutions were 

plated in a 384 well-plate according to plate map in Fig 3.8. 
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Fluorescence-based intracellular calcium mobilization assay: 384-well plate 

format. A  FLIPRTETRA® system (Molecular Devices, Sunnyvale, CA) was used to 

read fluorescence as described above with minor changes. In this 384-well plate 

assay, the dispensing volumes were 20 µl of the 20 µM (2x) compound solutions 

and 10 µl of OT at 5x EC20 (see Table 3.1.). The SOP for this assay is represented 

in Figure 3.7. Data was collected and analyzed in the same manner as for the 96-

well plate format. 

 

Implementation of Fluo-8 No Wash Calcium Assay Kit for the fluorescence-

based intracellular calcium mobilization assay for the identification of hOTR 

agonists and allosteric modulators for a 384 well-plate format. The validation of 

this dye was required by the Scripps Research Institute Molecular Screening Center 

previous to start the high throughput screen at their premises. This kit allows for a 

homogenous assay without removal of cell media prior to dye addition. This step is 

crucial to scale up the assay to a 1536 well plate format to allow screening of more 

than 200,000 compounds at the Screening Center. 

 

Dye preparation. Screen Quest TM Fluo-8 No Wash Calcium Assay Kit (ABD 

Bioquest, Sunnyvale, CA) was recommended by the Screening Center. Fluo8-NW 

dye-loading solution was prepared according to the manufacturer; instructions. The 

Fluo-8 NW stock solution was made by adding 200 μl DMSO into component A 

(Fluo-8NW) and mixing well. The 1x assay buffer consisted of 10ml of 10x Pluronic  



 110 
 

 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

A M E S S S S S S S S S S S S S S S S S S S S X X
B M E S S S S S S S S S S S S S S S S S S S S X X
C M E S S S S S S S S S S S S S S S S S S S S X X
D M E S S S S S S S S S S S S S S S S S S S S X X
E M E S S S S S S S S S S S S S S S S S S S S X X
F M E S S S S S S S S S S S S S S S S S S S S X X
G M E S S S S S S S S X X
H M E S S S S S S S S X X
I M E S S S S S S S S X X
J M E S S S S 

 
 

Test compounds at 2x (20 µM) 
 S S S S X X

K M E S S S S S S S S S S S S S S S S S S S S X X
L M E S S S S S S S S S S S S S S S S S S S S X X
M M E S S S S S S S S S S S S S S S S S S S S X X
N M E S S S S S S S S S S S S S S S S S S S S X X
O M E S S S S S S S S S S S S S S S S S S S S X X
P M E S S S S S S S S S S S S S S S S S S S S X X

 
Fig 3.8. Plate map for 384 well plate format for high throughput screen. Column 

1 represents the Min (M) and column 2 represents the EC20 (E) controls (both light 

blue). Columns 23 and 24 represent the Max (X) control (pink). Columns 3 to 22 

contain sample compounds (S) at 10 µM (final concentration).  

 

 

 Media 
 

Dye First dispense Second dispense 

Format Volume 
(µl) 

Volume 
(µl) 

Volume 
(µl) 

Conc. Volume 
(µl) 

Conc. 

96 wells 100  
(discard) 

30 30 2x 20 4x 

384 
Fluo4-NW 

20 
 (discard) 

20 20 2x 10 5x 

384 
Fluo8 

20 
(do not discard) 

20 10 5x 10 6x 

 
Table 3.1. Comparison of volumes and concentrations dispensed of drugs and 
controls for the different formats of the screen. First dispense concentrations 

correspond to controls and drug plates. Second dispense concentrations correspond 

to EC10 OT. 
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F127 Plus (component B), 90ml of 1X HBSS and 1ml of Tryptan red dye. Both 

solutions could be aliquoted and stored at ≤ -20 ºC in the dark for at least a month if 

repeated freeze-thaw cycles were prevented. The Fluo-8 NW dye-loading solution 

for one cell plate was made by adding 20 µl of DMSO reconstituted Fluo-8 NW stock 

solution into 10ml of 1x assay buffer, mixing them well. This work solution was stable 

for at least 2 hours at RT avoiding light. The remainder of the dye working solution 

could be aliquoted and frozen at ≤ –20°C in the dark indefinitely. 

 
 
Cell preparation. Media from plated cells (see cell plating section) was kept in the 

wells and 20 µl of dye working solution was added. Cells were incubated with the 

dye for 1 h at 37 ºC and then for 30 min at RT in the dark. 

 

Dose response curves and controls preparation. Dose response curves were 

generated for OT, AVP, carbetocin, and compound 39. The 16-point curves were 

prepared as 10x serial dilutions for each compound with initial concentrations 

starting at 10 µM and 3 µM. Each point was plated four times, plating as shown in 

Fig 3.9. The working concentrations to make the plate were 5x.  

 

Fluorescence-based intracellular calcium mobilization assay using the Fluo-8 

dye. Assays were conducted as described above with the following minor 

modifications: 10 µl for the 5x compound solutions (first dispense) and 10 µl for the 

OT at 6x of EC20 (second dispensed) (see Table 3.1.). The SOP for this assay is 

represented in Figure 3.6. Data was collected and analyzed in the same manner as 

for the 96 and 384 well plate format. 
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 Controls OT AVP Carbetocin Compound 39 Controls
Row 1-2  3-6  7-10  11-14  15-18 23- 24 

A Max 0.0003nM 0.0003nM 0.0003nM 0.0003nM Min 
B Max 0.001nM 0.001nM 0.001nM 0.001nM Min 
C Max 0.003nM 0.003nM 0.003nM 0.003nM Min 
D Max 0.01nM 0.01nM 0.01nM 0.01nM Min 
E Min 0.03nM 0.03nM 0.03nM 0.03nM B 
F Min 0.1nM 0.1nM 0.1nM 0.1nM B 
G Min 0.3nM 0.3nM 0.3nM 0.3nM B 
H Min 1nM 1nM 1nM 1nM B 
I B 3nM 3nM 3nM 3nM Min 
J B 10nM 10nM 10nM 10nM Min 
K B 30nM 30nM 30nM 30nM Min 
L B 100nM 100nM 100nM 100nM Min 
M Max 300nM 300nM 300nM 300nM Max 
N Max 1 µM  1 µM  1 µM  1 µM  Max 
O Max 3 µM  3 µM  3 µM  3 µM  Max 
P Max 10 µM  10 µM  10 µM  10 µM  Max 

 

Fig 3.9. Map plate for validation of Fluo-8 NW dye for 1536 well plate format. 
The concentrations of all compounds are expressed as final; they were all prepared 

as 5x in the dispensing plate. Columns 1, 2, 23, and 24 are reserved for controls that 

will be run during the HTS. 
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Comparison between a chemiluminescent assay and the FLIPRTETRA® system 

fluorescence cell-based assay for identification of hOTR agonists and positive 

allosteric modulators. The PathHunterTM CHO-K1 OTR β-Arrestin Cell Line was 

used with the PathHunter Detection Kit. This technology was tested in a 96 well 

plate format in collaboration with the Center for Integrative Chemical Biology and 

Drug Discovery at UNC.  

 
 
PathHunterTM cell line culture. The PathHunter CHO-K1 OTR β-Arrestin cell line 

was obtained from the manufacturer. They were grown in media that consists of 

Hams F-12, 300 µg/ml hygromycin, 800 μg/ml geneticin sulfate (G418), 10% fetal 

bovine serum, and 1x penicillin/streptomycin/glutamine, following the manufacturer’s 

instructions. The cell line was incubated at 37°C and 5% CO2 in 75cm2 flasks until 

70% confluency was reached. At that point, they were either passaged to new flasks 

to allow expansion of growing cells or they were plated to be used in the assays. 

Cells were incubated with 0.05% Trypsin –EDTA at 37°C for 5 minutes for 

dissociation.  

 

Cell plating. Cells were seeded at 20,000 cells/ well in 90 µl  of complete medium in 

white-walled with clear bottom, 96-well plates and incubated overnight @ 37ºC and 

5% CO2 to allow adherence to plate. 

 

Drug plate preparation. OT, vasopressin, carbetocin, compound 39, and NSC 

42414 were dissolved in DMSO to a concentration of 1mM. A dose response curve 
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of 12 points was run for each compound. Each concentration was prepared as a 10x 

solution of the desired final concentration. DMSO concentration did not exceed 1% 

in the final reaction volume. The dilution scheme for the curve was 2x and 10x 

intercalated dilutions, starting with 500 µM, as shown in fig. 3.10. The OT EC10 

concentration was 0.05nM. All the dilutions were made in HBSS. 

 

Dye preparation. The detection reagent was prepared from the kit components as 

specified by the manufacturer. In short, 1 part of Gal substrate was added to 5 parts 

of the Emerald solution and 19 parts of HBSS. This mix was kept at RT in dark for 

the day of analysis. The remainder of the dye was aliquoted and stored at -20ºC to 

be used later.  

 

Chemiluminesce-based intracellular enzyme fragment complementation assay. 

Cells were incubated with 10 µl per well of the compounds’ dilutions for 90 minutes 

at 37°C. The positive allosteric modulator was added 10 min prior to adding OT at 

EC10. Detection reagent (50 µl) was added to each well to incubate at RT for 60 

minutes. Cell plates were read on an Envision standard luminescence plate reader 

(PerkinElmer, Boston, MA). Each plate (see layout in fig 3.10.) was prepared and 

read by duplicate. 
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 1 2 3 4 5 6 7 8 9 10 11 12 

Cc. (µM) 50 10 5 1 0.5 0.1 0.05 0.01 0.005 0.001 0.0005 0.0001 

A-B Oxytocin 

C Vasopressin 

D Carbetocin 

E Compound 39 

F Allosteric potentiator 

G OT EC10 Max. OT 

H Buffer OT EC10 

 

Fig 3.10. Map plate for validation of PathHunter Detection Technology. All 

compounds were tested at the same concentrations (expressed here in µM). These 

are expressed as final, but they were all prepared as 10x. Rows G and H were used 

for controls: OT EC10, 0.05nM and Max OT at 50 µM. 
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RESULTS AND DISCUSSION 

 

The impact that the OT system is currently having in the involvement in 

neuropsychiatric diseases and the potential that OT is presenting as a therapeutic 

tool, poses an vital need to obtain analogs of this hormone that will present more 

advantages that this natural ligand (see chapter 1). The validation and optimization 

of a HTS protocol will provide a robust tool for the identification of agonists and 

positive allosteric modulators of this receptor. The current literature does not report 

any effort to screen for modulators of the OTR; hence our work will provide new 

molecules as well as new tools for the development of this field. 

 

Validation of fluorescence-based intracellular calcium mobilization assay for 

the identification of hOTR agonists and allosteric modulators in a 96 well-plate 

format. 

  The NIMH Psychoactive Drug Screening Program, directed by Dr. Bryan Roth 

at UNC, has established a fluorescence-based assay in a 96 well plate format that 

reports Ca
2+ 

release after stimulation of the hOTR. The assay utilizes CHO cells 

stably transfected with the human OT receptor. A typical assay with this cell line 

generated a Z’ factor of 0.6, with a CV% below 10, a S:B ratio above 5 and a 

significantly low plate-to-plate and day-to-day variability. In the past, the assay has 

been used to evaluate OT receptor antagonists primarily for counter screening 

purposes.  
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Our efforts focused on further validating the assay for high throughput 

screening to identify positive allosteric modulators and agonists of the human OTR. 

In a pilot assay, we screened the NCI Diversity Set, 1990 compounds, and identified 

25 compounds (1.25% success rate) that show a 50% or more increase of 

normalized % activation in duplicate assays. We found that 15 compounds acted as 

agonists and 10 as positive allosteric modulators. Tables 3.2. and 3.3. show a 

complete list of confirmed active agonists and positive allosteric modulator. 

Ergosterol was identified as a hit serving as a de facto positive internal control as 

cholesterol and its analogs have been demonstrated to be positive allosteric 

modulators of the hOTR [42, 44, 50, 264, 265]. Figure 3.11 shows a representative 

plate map for this 96 well plate format (3.11.A.) and the scatter plot for the complete 

library screen (3.11.B.). Figure 3.12. shows the dose response curve for OT that we 

have reproduced from the literature with a similar EC50 of 0.4nM [17]. This data 

shows that the screen can be implemented for the identification of agonists and 

positive allosteric modulators of the hOTR in a low-throughput format as 96 wells per 

plate. 

 

Optimization of fluorescence-based intracellular calcium mobilization assay 

for the identification of hOTR agonists and allosteric modulators for a 384 

well-plate format.  

In order to be able to screen larger, more diverse libraries, we shifted our 

efforts in optimizing the OTR assay in a 384 well plate format. This format affords an  

assay compatible with libraries of more than 20,000 compounds. To successfully 
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Figure 3.11. Screen of NCI Diversity Set revealed agonists and positive 
allosteric modulators. A. Representative plate from screen in a 96 well plate 

format. Plate controls were loaded in columns 1 and 12. Max control (yellow) is OT 

at 100nM. Min control (green) is no OT. EC40 control (blue) is OT at 0.1nM. A 

prospective positive allosteric modulator that has a 67% signal increase is shown 

(red circle). B. Scatter plot of entire 1990 compound library screen. 

 

 

  

  

 

 

 

 

 

 

 

 

 

 

 
Figure 3.12. Dose response curve for activation of the hOTR in a 96 well plate 
format. The EC50 for OT is 0.4 nM. 
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scale up the assay, we optimized cell culture and density, DMSO tolerance, readout 

variability, reagent volumes and the standard operating protocol. The BRITE Center 

provided the Prestwick chemical library that contains 1120 small molecules, 90% 

being marketed drugs and 10% bioactive alkaloids or related substances, and thus it 

presents the greatest possible degree of drug-likeliness. 

Our first efforts concentrated in optimizing cell culture and plating. We 

compared keeping our cells frozen immediately before plating vs. passing them 

throughout the screening process. We also determined optimal plating conditions. 

We found out that cells that have been kept in liquid nitrogen, thawed and plated the 

day before the screen, did not respond consistently; therefore a passage-plate 

scheme was developed to ensure optimal cell condition and number for every day of 

the screen. Cell plate treatment was also investigated to ensure that pretreatment of 

the plates (poly-D-Lys or gelatin) did not interfere with the health and/or attachment 

of the cells. Fig 3.13.A, C, and D summarizes our findings. We found that cells 

needed to be grown continuously at 37ºC and plated in tissue culture (TC) treated 

plates without any further treatment. Frozen cells do not attach evenly to the bottom 

of the wells. Also, the use of poly-D-Lys treated plates prevented the cells from 

attaching to the wells (data not shown). Fig 3.13.A. also shows the optimal cell 

density per well for a 384 well plate format. We chose to plate between 12,500 and 

15,000 cells per well. Tolerance to DMSO was also investigated to asses the 

maximum final concentration allowed for the screen. Fig 3.13.B. shows that DMSO 

final concentration should not exceed 1.25 %. 

Dose response curves for OT and a small molecule oxytocin antagonist, L-
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Fig 3.13. Optimization of cell conservation and plate treatment for a 384 well 
plate format. A. Maximum signal of frozen cells (red) vs. cells grown at 37ºC (light 

blue signal= max., blue= min.). Incubated cells show a maximum and stable signal 

at 1250 RLU. Frozen cells show an increasing signal even at 25000 cells per well, 

when cells are over grown. Max signal: [OT] =100nM. B. Max signal of OT (red) 

and min signal (blue) in increasing DMSO concentrations  C. Cells plated in poly-

D-Lys plates (light blue) show a CV of 90%. D. Cells plated in TC plates (red) have 

a CV of 12% at maximum response OT concentration. Max. response OT 

concentration = 100nM. 
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371,257 (Tocris Bioscience, Ellisville, MO) were used to further validate the assay. 

The EC50 obtained for OT was 0.19nM and the IC50 calculated for the antagonist was 

7.9nM, both values are in concordance with the literature [17, 266] (Fig 3.14.). We 

screened the Prestwick chemical library to assess reproducibility of the assay. All 

plates were run in duplicates. Compounds were considered active if the average of 

both readings exceeded 50% normalized activation. From a pool of 1,100 

compounds, we found 12 compounds that showed activation of the hOTR (3 

agonists and 9 positive allosteric modulators). The hit rate for this case was 1.09% 

and the Z’ score was 0.71 [267]. Tables 3.2. and 3.3. show a complete list of active 

agonists and positive allosteric modulator confirmed hits. From this data we 

concluded that the assay is optimized for screening in a 384 well plate format. 
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Fig 3.14. Dose response curves for OT and L 371,257, a selective OT 
antagonist in the 384 well-plate format. A. The EC50 for OT was 0.19 nM (data 

point in triplicate). B. The IC50 for the antagonist was 7.9 nM (data points in 

quadruplicate). [OT] = 100 nM. 
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Execution of medium-throughput screen for the identification of hOTR 
agonists and allosteric modulators for a 384 well-plate format.  
 

 The Asinex Gold library was screen in 384 well plates. On every plate, we 

included positive (OT maximum concentration and OT at EC20) and negative (no OT) 

controls to allow Z’ calculations as well as normalized % activation of the 

compounds screened (see methods section). Fig 3.15. shows raw data from the 

screen, as well as individual profiles of the controls, hOTR agonists, and positive 

allosteric modulators. 

 For this first instance of the screen, 132 compounds showed an increase in 

direct normalized activation of ≥ 50% (agonists), and 18 were identified as potential 

positive allosteric modulators. The hit rate was 0.52% and the Z’ was 0.69. To 

confirm these hits, a duplicate was run for the 132 compounds. The normalized 

activation was reproduced only for 6 compounds, decreasing the hit rate to 0.02%. 

Tables 3.2. and 3.3. show a complete list of active agonists and positive allosteric 

modulator confirmed hits. 

Hits obtained from the three libraries were investigated to assess if they 

presented any inconvenient to allow validation. We searched the literature available, 

mainly through PubChem and ChemFinder, to obtain any information on these 

compounds. The criteria to discard hits included toxicity, high molecular weight, 

fluorescence (giving false positives), druglikeness, Lipinski’s rule of five evaluation, 

known biological activity, derivation feasibility, etc. The hits that passed these 

selection criteria were then validated for the hOTR (see chapter 4). 
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Figure 3.15. Multi-well graph from agonists and positive allosteric modulators 
screen displaying controls location and kinetic profiles. A. The green wells 

represent the negative and EC20 (OT at 0.20nM) controls and the blue wells 

represent OT at maximum response (100nM). CV= 8%. B. Kinetic profile for 

controls, agonists, and positive allosteric modulators of hOTR. Positive controls are 

shown: OT at maximum response (100nM) (blue) and OT at EC20 (0.25nM) (green). 

The magenta line represents the profile for an agonist and the red line shows a 

profile for a positive allosteric modulator of the hOTR. Normalized % hOTR 

activation is 65%, and 56% respectively. 
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Library Compound ID Normalized % Activation 

NCI Diversity Set NSC 13768 137 

 NSC105550 138 

 NSC 108944 152 

 NSC 112675 137 

 NSC 40016 140 

 NSC 305743 145 

 NSC 204936 164 

 NSC 347512 135 

 NSC 54278 146 

 NSC 62594 146 

 NSC 201430 157 

 NSC 88947 139 

 NSC 62791 162 

 NSC 69573 144 

 NSC 371876 163 

 NSC 63875 158 

Prestwick PWK432932 (Oxethazaine) 61 

 PWK433161 (Spiperone) 109 

 PWK433795 (Thonzonium bromide) 65 

Asinex BAS 02532822:831592 61 

 BAS 02331893:830669 61 

 BAS 03008198:831063 70 

 ASN 03368019:834900 70 

 BAS 00411435:826486 96 

 

Table 3.2. Confirmed hits that showed agonistic behavior for the human OTR.  
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Library Compound ID Normalized % Activation 

NCI Diversity Set NSC 42414 166 

 NSC 14343 139 

 NSC 626629 148 

 NSC 166395 150 

 NSC 195952 155 

 NSC 191411 145 

 NSC 13970 143 

 NSC 103779 131 

 NSC 67690 149 

Prestwick PWK-433179 clemastine fumarate 73 

 PWK-433335 metrizamide 51 

 PWK-433411 thiocolchicoside 52 

 PWK-433557 lycorine hydrochloride 55 

 PWK-433379 quercetine dihydrate 82 

 PWK-433558 karakoline 56 

 PWK-433751 niacin 56 

 PWK-433796 Idazoxan hydrochloride 50 

 PWK-433604 Metoprolol tartrate 54 

Asinex ASN 05588520:820716 65 

 
Table 3.3. Confirmed hits that showed positive allosteric modulator behavior 

for the human OTR.  
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Implementation of Fluo-8 No Wash Calcium Assay Kit for the fluorescence-

based intracellular calcium mobilization assay for the identification of hOTR 

agonists and allosteric modulators for a 384 well-plate format.  

 The validated and optimized fluorescence-based assay let us plan for a high-

throughput screen campaign. Our resources, including available libraries and robotic 

hardware, did not allow us to perform the screen at a larger scale, i.e. screen 

100,000’s compounds. In order to fulfill our needs to screen a structurally more 

diverse array of compounds, we recruited the services of the Molecular Libraries 

Probe Centers Network (MLPCN). This center is a part of the NIH’s Molecular 

Libraries Initiative (MLI). It comprises 5 specialty centers that are part of the NIH's 

strategic funding plan, the Roadmap Initiative. The Scripps Research Molecular 

Screening Center (SRMSC) is dedicated to the discovery of new molecular probes. 

This center accepted our assay to identify agonists and positive allosteric 

modulators of the oxytocin system (application number: 1 R03 MH 085678-01A1). 

The assay was transferred to the SRMSC to be recapitulated and miniaturized to 

1536-well format.  

Transferring the screen to the SRMSC required several steps towards 

optimizing the screen; mainly performing the screen without the need to remove the 

cell culture media before dye addition (homogeneous assay). According to the 

manufacture’s instructions, the dyes that we have used in the past required removal 

of cell culture media before addition of it to the cells. We validated the use of a 

homogeneous assay following the NCGC Assay Guidance Manual [268]. We also 
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validated the Vasopressin (V1a) receptor counterscreen and provided control 

compounds to be implemented in their screening campaign. 

 Our developed SOP was retested using the Screen Quest TM Fluo-8 No Wash 

Calcium Assay Kit to validate a homogeneous primary hOTR assay. Table 3.4. 

contains the assay statistics for this no-wash assay that is amenable for HTS. Plate-

to plate and day-to-day variability was within accepted values as OT EC50 values did 

not shift more that 2-fold between plates or between any given days. The same 

variability was found for AVP in the counterscreen. The DMSO tolerance for this 

assay was up to 1.25% final DMSO concentration for the CHO-hOTR assay. The 

tolerance for the CHO-hV1a assay was up to 1% as shown in Fig. 3.16. The EC50 

values for the agonists OT and AVP were also reported. 

 To facilitate the HTS, an appropriate agonist concentration needed to be 

validated for the primary screen of positive allosteric modulators. In addition, control 

compounds had to be provided to determine the adequate HTS assay controls. Four 

compounds were chosen to be tested: OT; AVP; carbetocin, a commercially 

available peptide-based OTR agonist; and compound 39, one of the two reported 

small molecule OTR selective agonists [204]. Figure 3.17. shows representative 

dose response curve for these control compounds for hOTR (3.17.A.) and hV1aR 

(3.17.B.). Representative plate-based statistics for these compound controls were 

also provided (Tables 3.5. and 3.6.). 

 The statistical analysis obtained for the implementation of the Screen QuestTM 

Fluo-8 No Wash Calcium Assay Kit provided the robust data required by the 

SRIMSC in order to initiate the miniaturization process to a 1536 well format. At this 
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point in time, the assay transfer has been completed and the assay implementation 

is waiting in their pipeline. Updates will be provided as soon as they become 

available. The screening center anticipated that this screen will be completed within 

6 months. 
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CHO-hOTR CHO-hV1a  

Agonist Potentiator Agonist Potentiator 
Z’ 0.90 ± 0.09 0.85 ± 0.08 0.8 ± 0.1 0.88 ± 0.09 
S:B ratio 14 ± 7 10 ± 2 17 ± 5 10 ± 4 
CV%     
Max 3 ± 2 idem 5 ± 2 idem 
EC50 5 ± 1 idem 4.3 ± 0.4 idem 
EC20 6.2 ± 0.5 idem 7 ± 1 idem 
EC10 7 ± 1 Idem 5.8 ± 0.3 idem 
 
Table 3.4. Assay statistics for the Screen Quest TM Fluo-8 No Wash Calcium 
Assay Kit for a homogeneous assay. CHO-hOTR cell line is used for the primary 

screen. CHO-V1a cell line is used for the counterscreen. 
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Figure 3.16. DMSO Tolerance for a 384 well plate format using a Screen Quest 
TM Fluo-8 No Wash Calcium Assay Kit for a homogeneous assay. A. Dose 

response curves of OT diluted in increasing amounts of DMSO for CHO-hOTR. The 

EC50 values for the different DMSO % in parenthesis were: 0.62 (0%), 0.74 (0.5%), 

0.33 (1%), and 0.57 (1.25%); all expressed in nM. Higher DMSO % did not a dose-

dependent signal. B. Dose response curve of AVP diluted in increasing amounts of 

DMSO for CHO-V1aR. The EC50 values for the different DMSO % in parenthesis 

were: 3.8 (0%) and 1.2 (1%); all expressed in nM. Higher DMSO % did not a dose-

dependent signal. 
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Fig. 3.17. Representative dose response curves for OT, AVP, carbetocin, and 
compound 39 in the CHO-hOTR (A) and CHO-hV1aR assays using the Screen 
Quest TM Fluo-8 No Wash Calcium Assay Kit (B). Carbetocin and compound 39 

do not activate the V1aR receptor significantly as these compounds are selective for 

the OTR (B).  
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EC50 (nM) 

 
hOTR 

 
hV1aR 

 
OT 

 

 
0.30 ± 0.09 

 
5 ± 2 

 
AVP 

 

 
5 ± 2 

 
0.3 ± 0.2 

 
Carbetocin 

 

 
3 ± 1 

 
170 ± 60 

 
Compound 39 

 

 
5 ± 1 

 
10170 ± 6000 

 

Table 3.5. EC50 values for OT, AVP, carbetocin, and compound 39. 

 

 
  

Oxytocin 
 

 
Vasopressin 

 
Carbetocin 

 
Compound 39

 
S:B 

 

 
17 ± 3 

 
18 ± 4 

 
17 ± 3 

 
18 ± 4 

 
CV% 

 

 
6 ± 2 

 
8 + 5 

 
11 ± 3 

 
11 ± 5 

 
Z 
 

 
0.8 ± 0.1 

 
0.7 ± 0.2 

 
0.6 ± 0.1 

 
0.6 ± 0.2 

 

Table 3.6. Representative plate-based statistical data for controls. 
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Comparison between a chemiluminescent assay and the FLIPRTETRA® system 

fluorescence cell-based assay for identification of hOTR agonists and positive 

allosteric modulators.  

 GPCR activation can be measured using a vast number of methods. Most of 

the drug discovery industry is focused on quantifying this activation through the use 

of the well implemented fluorescence cell-based assay FLIPRTETRA® system. The 

data that we have collected with the FLIPRTETRA® system was compared to a novel 

in vivo application of the established Enzyme Fragment Complementation 

technology pioneered by DiscoveRx (Fremont, CA). This technology is based in the 

direct analysis of GPCR activation via β-arrestin recruitment in a chemoluminescent 

assay. Attention is focused towards expanding OTR screening repertoire to be able 

to identify those compounds that escape the detection limits of the well know 

technologies that are currently being used. DiscoveRx’s claim is that the β-arrestin 

signaling pathway is generic to virtually all GPCRs, and that this signaling occurs 

irrespective of the G-protein coupling mechanism. Therefore, they have developed 

the PathHunterTM Detection kit that is used in conjunction with PathHunter cell lines 

and ProLabelTM /ProlinkTM expression vectors inside whole cells. This novel in vivo 

application of the enzyme fragment complementation (EFC) technology promises 

the detection of transient interactions and improvement of screening throughput. It 

can be used with any Gi-, Gq-, or Gs-coupled receptor. 

 A data analysis comparison was done to assess if the PathHunterTM β-

arrestin detection kit provided data as robust as the FLIPRTETRA® system. An assay 
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validation was performed first to evaluate the reproducibility of the assay. The results 

are shown in Table 3.7. 

To complete the validation of this assay, dose response curves were 

analyzed for OT, AVP, carbetocin, and compound 39. These OTR analogs’ curves 

were compared to curves obtained on a FLIPRTETRA® system (Fig. 3.18.). Table 3.8. 

shows the potencies and efficacies obtained for these molecules. The dose 

response curves showed significant differences among the OTR agonists. The 

efficacies obtained with the DiscoveRx platform, with both cell lines, were 

considerably reduced when compared to the natural ligand curve. The differences in 

the maximal responses for the agonists could be explained by functional selectivity  

(see future plans).  

Overall, the comparison between technologies demonstrates that the 

DiscoveRx platform is compatible with screening the hOTR. Maybe, this technology 

identifies active compounds that the FLIPR technology does not. On the other hand, 

the FLIPR technology measures a second messenger downstream from the 

activated GPCR, allowing for amplification of the quantified signal, therefore leading 

to more false positive results. This artifact might be eliminated by quantifying the 

direct recruitment of β-arrestin to the activated receptor. It is important to have in 

mind that the fused fragments that the protein and the receptor have could modify 

their native responses, giving another array of false positives. 
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 FLIPRTETRA® DiscoveRx DiscoveRx 
Express 

Z’ 0.90 ± 0.09 0.88 ± 0.08 0.86 

S:B 14 ± 7 45 ± 8 6.2 

CV%    

Max [OT]= 500nM 3 ± 2 12 ± 3 9.0 

Min [OT]= 0.005nM 6.2 ± 0.5 25 ± 6  --- 

Buffer 7 ± 1 8 ± 4 5.3 

 

Table 3.7. Statistical data for the comparison of the PathHunterTM β-arrestin 
Detection kit and the FLIPRTETRA® system. The DiscoveRx column shows the 
data for the PathHunter™ Cell Lines. The DiscoveRx Express refers to the 

PathHunter™ eXpress β-Arrestin GPCR Kits using the assay-ready, frozen 

PathHunter™ eXpress cells. 
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 FLIPRTETRA® 
 

DiscoveRx 
 

DiscoveRx 
Express 

EC50 (nM)    

OT 0.30 ± 0.09 23 ± 22 44.7 

AVP 5 ± 2 1600 ± 900 2680 

Carbetocin 3 ± 1 5 ± 2 5.3 

Compound 39 5 ± 1 310 ± 260 480 

Efficacy (%)    

OT --- --- --- 

AVP 105 41 ± 6 38 

Carbetocin 92 32 ± 5 32 

Compound 39 102 51 ± 6 48 

 
Table 3.8. Potencies and efficacies of OTR agonists in FLIPRTETRA® and 
DiscoveRx systems. Potencies and efficacies of the DiscoveRx Express cell lines 

were run as single points only. Efficacies were calculated considering the OT 

response as 100%. 
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Fig 3.18. Dose response curves for OT, AVP, carbetocin, and compound 39 in 
the FLIPR and DiscoveRx platforms. A. FLIPRTETRA® platform. B. PathHunter™ 

eXpress β-Arrestin GPCR Kit using the PathHunter™ OTR Cell Line C. 
PathHunter™ eXpress β-Arrestin GPCR Kit using the frozen PathHunter™ OTR 

eXpress cell line. 
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more accurately the effects of the compounds being tested. Also, our results could 

be hinting the presence of functional selectivity [271, 272]. In order to validate this 

hypothesis, direct arrestin translocation with a native receptor will need to be 

investigated. 
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FUTURE PLANS 

 

 The compounds found to activate the hOTR needed to be validated to discard 

false positives and non-selective active hits. These procedures will be addressed in 

chapter 4. 

 The implementation of the Screen Quest TM Fluo-8 No Wash Calcium Assay 

Kit for the 384 well plate format was completed successfully. The assay was 

transferred to the MLPCN and it is in queue for assay implementation, which 

includes assay recapitulation, miniaturization to a 1536 well plate format, and pilot 

screening. The primary uHTS campaign will begin immediately following the 

completion of the assay implementation. According to the center’s guidelines, these 

processes require 6 months for completion. The secondary and tertiary assays (i.e. 

‘hit confirmation”) will be completed within 12 months from assay transfer. 

 The technology comparison between the FLIPRTETRA® platform and the 

PathHunter™ β-Arrestin GPCR Kit from DiscoveRx brought up interesting questions. 

Given the independence of this technology with specific G-protein recruitment, our 

data could suggest that the OTR could signal through multiple G proteins and not be 

limited only to Gq. There is already some evidence of this promiscuity; therefore 

further investigation needs to be addressed in the future [269, 270].  

The fragment complementation technology signal could be somewhat artificial 

as the modified β-arrestin recruitment over the 90 minute period could lead to non-

specific complementation due to transient translocation. The activation of the 

receptor in its native form should be investigated. An option would be to follow 

tagged arrestin as it is recruited to the membrane after receptor activation to assess 



CHAPTER 4 

 

VALIDATION OF ACTIVES 

INTRODUCTION 

 

A high-throughput screening campaign is a useful first step towards 

successful target-based drug and chemical tool discovery. This process allows the 

identification of hundreds of compounds with a specific biochemical or biological 

activity that is selected for by the type of assay. False positives are inherent to any 

high throughput screen, so a major task required after identifying initial hit 

compounds from a screen is to distinguish real “hits” from the false positive artifacts 

identified by the assay. 

In Chapter 3, I identified small molecules that activated the OTR in a 

fluorescent-based cell assay. The chosen technology measured intracellular Ca2+ 

release as a result of ligand binding to OTR stably expressed in CHO cells. Its 

concomitant receptor activation, and coupling to the Gq subunit causes a Ca2+ 

release downstream effect. Ca2+ release could be non-specific if the compounds 

tested activate endogenous receptors of the cell line chosen for the assay. 

Another common source for false positives is from fluorescent compounds. 

These molecules present a signal by themselves when dispensed into the wells. 

Yellow colored compounds show a considerable increase in signal when tested.  
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Therefore, there is a need to distinguish between true actives that affect OTR and 

those that generate an irrelevant signal. To overcome this obstacle, dose response 

curves were tested to discard those compounds that did not show a concentration 

dependent signal.  

The OTR receptor belongs to the vasopressin / oxytocin receptor subfamily of 

GPCR receptors (see chapter 1) and they display a high degree of sequence identity 

[17, 18] (see Chapter 1, figures 1.6. and 1.9. for conserved residues and sequences 

alignment). The endogenous ligands for these receptors (OT and vasopressin (AVP) 

in humans and rodents) are also highly related peptides [202, 273]. Given this 

conservation in both peptides and receptors, it is expected that OT and AVP cross 

react with their receptors. Table 4.1. shows the EC50 of the natural ligands OT and 

AVP for this subfamily of human receptors. 

The objective of this research plan was to identify selective and potent small 

molecule agonists and positive allosteric modulators of the hOTR. To prevail over 

the selectivity issue present with the VR family, selectivity counter screens were 

conducted with the three vasopressin receptors subtypes mentioned above. Dose 

response curves of the active compounds were assayed against V1a, V1b, or V2 

receptors stably transfected CHO cells to assess efficacy and potency against these 

receptors in comparison with the OTR. 

Quantification of IP3 species correlates with receptor activation and Gq 

coupling. To confirm specific activation of the OTR, quantification of the IP3 species 

were tested as a response of dose dependent concentrations of the active 

compounds. 
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Toxicity assessment is crucial when deciding if a molecule will continue the 

pipeline of the drug discovery process or it will be discarded. Initial cellular toxicity 

testing gives some insight into the response the tested molecules will have in the 

animal testing stage.  

The rationale of validating the potential leads that arise from the HTS is 

supported by a pressing need for small molecules that selectively activate the OT 

system within the CNS. These small molecules will serve as new chemical tools to 

elucidate the complex roles for oxytocin in complex behavior, and they will provide 

new potential leads for a drug discovery campaign in the treatment of specific 

neuropsychiatric disorders. 
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 OTR V1aR V1bR V2R 

OT 0.2-0.4 15-20 20 >1000 

AVP 5-7 0.2 0.1 180 

 

Table 4.1. EC50 of the natural ligands for the human OT / AVP receptors. The 

EC50 values are given in nM and have been obtained with fluorescent-based cell 

assays using the FLIPR® Tetra system. 
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METHODS AND MATERIALS 
 

Materials. All reagents were ACS reagent grade and used without further 

purification unless otherwise noted. Oxytocin, vasopressin (Sigma), carbetocin 

(Bachem), and the oxytocin antagonist L-371,251 (Tocris) were purchased in the 

powder form. Compound 39 was synthesized by the Center for Integrative Chemical 

Biology and Drug Discovery at UNC-CH. The FLIPR Calcium 4 Assay Kit (Molecular 

Devices) was used for the fluorometric assays. The NCI Diversity set was obtained 

from the Developmental Therapeutics Program of the NCI/NIH’s repository. The 

Prestwick and the Asinex Gold Libraries were provided by the Biomanufacturing 

Research Institute and Technology Enterprise (BRITE Center at NCCU). The stably 

transfected CHO-hOTR, CHO-V1a, CHO-V1b, CHO-V2, and CHO wild type cells were 

kindly provided by the NIMH Psychoactive Drug Screening Program at UNC-CH. the 

HEK 293 cell line was purchase from the UNC Tissue Culture Facility. The reagents 

used for cell culture were purchased from Gibco-Invitrogen. 

 

Efficacy and counter screens 

 

Cell culture. For the efficacy assay, stably transfected CHO-hOTR cells were grown 

in OT/V1a media that consists of: Hams F-12, 400 ug/ml geneticin sulfate (G-418), 

10% calf serum, 15 mM HEPES, and 50 U of penicillin/ 50 µg of streptomycin. For 

the counter screens, stably transfected CHO-h V1aR cells were grown in OT/V1a 

media that consists of: Hams F-12, 400 μg/ml geneticin sulfate (G-418), 10% calf 

serum, 15mM HEPES, and 50 U of penicillin/ 50µg of streptomycin. Stably 
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transfected CHO-h V1bR and CHO-h V2R cells were grown in V1b/ V2 media that 

consists of: Hams F-12, 150μg/ml zeocine, 10% calf serum, 15mM HEPES, and 50 

U of penicillin/ 50 µg of streptomycin. Wild-type CHO cells were grown in COS/HEK 

media that consists of: DMEM, 10% fetal bovine or calf serum, and 50 U of penicillin/ 

50 µg of streptomycin. Cell lines were incubated at 37°C and 5% CO2 in 75 cm2 

flasks until 80% confluency was reached. At that point, cells were either passaged to 

new flasks to allow expansion of growing cells or were plated for assays. Cells were 

incubated with 0.05% Trypsin –EDTA at 37°C for 5 minutes for dissociation. The 

stably transfected CHO-hOTR cell line was used in the assays until they have 

reached a passage number of 20, after which they were discarded as they started to 

show a decrease in response, maybe due to receptor expression inefficiency. In this 

case, a new badge of fresh cells was grown from cells stored in liquid nitrogen. 

 

Cell plating for efficacy assay. Stably transfected cells were plated on uncoated 

96 well tissue culture polystyrene plates (Greiner Bio-one, Monroe, NC). The plating 

densities were 40,000 cells/well in 100 μl of media. Cells were incubated at 37°C 

and 5% CO2 for 18-24 hours before assays to allow cells to adhere. 

 

Dye preparation. The FLIPR Calcium 4 Assay Kit (Molecular Devices) was used for 

secondary screens. The dye (component A) was prepared according to the 

manufacturer instructions. Component A was dissolved in 10 ml of 1x Hanks’ 

Balanced Salt Solution and 20 mM HEPES, pH 7.4. This stock solution is stable at -

20 ºC for several months. The working solution of the dye was prepared daily by 
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dissolving 1ml of the stock solution in 30 ml of assay buffer made as follows: 1x 

HBSS (138 mM NaCl, 5.3 mM KCl, 1.3 mM CaCl2, 0.49 mM MgCl2, 041 mM 

MgSO4, 0.44 mM KH2PO4, and 0.34 mM Na2HPO4), 20mM HEPES, 2.5 mM 

Probenecid, corrected to pH 7.4 with NaOH 10 N. The dye working solution was kept 

in the dark at room temperature or 37 ºC throughout the day. 

 

Cell preparation. Media from plated cells was aspirated and replaced with 30ul of 

fresh dye working solution. Cells were incubated with the dye for 45 min at 37 ºC 

and then at RT in the dark for another 15 min. 

 

Controls and active compounds’ dose response curve preparation. OT, AVP, 

compound 39 and all the actives found during the screening campaign were 

obtained in powder form their respective sources. The powders were dissolved in 

DMSO to generate a 1mM solution. Dilutions of prospective agonists and controls for 

the first addition of the protocol were made in assay buffer as 2x stocks. The final 

DMSO content was below 1%. Dilutions of prospective modulators and controls for 

the second addition of the protocol (including OT at EC20) were made in assay buffer 

as 4x stocks. Controls were added to each plate; they included OT (efficacy) or AVP 

(counter) at maximum response and at EC20, and the assay buffer as a negative. 

Eight point dose response curves were done for each compound confirmed in the 

HTS to obtain EC50 values. Ten-fold serial dilutions of a 50μM stock solution were 

prepared and each concentration was plated by triplicate. 
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Fluorescence-based intracellular calcium mobilization assay. A  FLIPRTETRA® 

system (Molecular Devices, Sunnyvale, CA) was used to read fluorescence 

(excitation wavelength: 470-495 nm, emission wavelength: 515-575 nm) in each well 

every 1 s for 30 sec, to establish a baseline reading. After this period, the 

FLIPRTETRA® transferred 30 μl of the 2X compound solution from the compound plate 

to the cell plate (first addition). These readings were made every 1s for 5 min to 

validate hOTR agonists. A second dispense transferred 20 μL of 4x OT (or AVP for 

the counter screens) at the EC20 from the OT (AVP) plate to the cell plate, and 

readings were made every 1 s for 3 min. This portion of the assay was designed to 

validate hOTR positive allosteric modulators. The SOP for this assay is represented 

in Figure 3.7. Each dose response curve was obtained from duplicate data points. 

 

Data collection, analysis, and interpretation. Data was collected using 

ScreenWorksTM 2.0.0.22 software (Molecular Devices) and analyzed using Graph 

Pad Prism 5 for Windows. Each kinetic trace was normalized to the initial 

fluorescence intensity to correct for loading of the cells and was reported as percent 

normalized activation. Percent normalized activation was calculated as (sample 

value – min control value) / (max control value – min control value) * 100. For 

agonist calculations (first dispense), the no OT (AVP) control was used as the 

minimum control. For the positive allosteric modulator calculations, the minimum 

control was the value obtained for OT (AVP for counter screen) at EC20. The 

maximum control was OT (or AVP) at maximum concentration for both calculations. 

The equation to fit the data was Y=100/(1+10^((LogEC50-X)*Hill Slope)) (obtained 
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from Graph Pad Prism 5 for Windows). Only compounds that presented EC50 in the 

low μM range were tested further. Any compound that showed significant % 

normalized activation in wild-type CHO cells were discarded as the calcium 

response measured was not specific to the activation of the receptors studied.  

 

SPA PIP2 Hydrolysis assay 

 

Cell culture for the SPA assay. Stably transfected CHO-hOTR cells were grown in 

media that consists of: DMEM supplemented with 5% dialyzed FBS and 50 U of 

penicillin/ 50 µg of streptomycin. Culture of this cell line was done as explained in the 

previous subsection. 

 

Cell plating. Stably transfected cells were plated on uncoated 96 well tissue culture 

polystyrene plates (Greiner Bio-one, Monroe, NC). The plating density was 30,000 

cells/well in 100 μl of media. Cells will be incubated at 37°C and 5% CO2 for an 

additional 24 hours before starting the assay (day 1). 

 

SPA assay. [3H] inositol phosphates accumulation was detected using a scintillation 

proximity assay. 

Day 2. Growth media was replaced by 100 μl of inositol-free BME (supplemented 

with 5% dialyzed FBS and 50 U of penicillin/ 50 µg of streptomycin) and incubated 

again for 1.5 hours at 37ºC. Medium was removed and 100 μl of inositol-free BME 
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containing 5% dialyzed FBS and 0.01 μCi/μl [3H] myo-inositol was added. The cells 

were incubated for an additional 18 hours at 37ºC. 

Day 3. Working buffer preparation; 1x Hank’s balanced salt solution, 11 mM d-

glucose (dextrose), 35 mM LiCl, and 0.2% sodium bicarbonate. This buffer was 

incubated at 37ºC for 30 to 60 minutes. Assay: the inositol-free BME was aspirated 

from the cells and replaced with 100 μl of compounds to be incubated for 1 hour at 

37ºC. Antagonist dilutions were added 10 min prior to adding the OT dilutions. Assay 

were terminated by aspiration of the drug solutions from the cells and addition of 30 

μl of 50 mM formic acid stop solution followed by incubation for 1 hr at room 

temperature. 

While the cells were lysing, the RNA binding YSi SPA beads (Amersham, CA) 

were aliquoted by diluting to 2.67 mg/ml in cold H2O. A volume of 75 μl of the bead 

slurry was added to each of the 96 wells on the plate and kept on ice. To each of 

these wells, 30 μl of formic acid supernatant was applied and the plate was then 

agitated at 4ºC for 30 min. The beads were allowed to settle at 4ºC for 4 hours and 

then counted in a Wallac Micro Beta Trilux scintillation counter (Perkin Elmer, 

Waltham, MA).  

 

Controls and active compounds dose response curve preparation. Eight point 

dose response curves were done for each compound confirmed in the efficacy 

assay. Ten-fold serial dilutions of a 100 μM stock solution were prepared and each 

concentration was plated by triplicate. Controls were added to each plate; they 
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included OT at maximum response and the assay buffer. All dilutions were made 

using the working buffer prepared on day 3.  

 

Data collection, analysis, and interpretation. Data was collected using Excel and 

analyzed using Graph Pad Prism 5 for Windows. Each trace was normalized to the 

initial count per minute intensity to correct for loading of the cells, and it was reported 

as % normalized activation. This parameter was calculated as (sample value – min 

control value) / (max control value – min control value) * 100. The equation to fit the 

data was shown above. Only compounds that present EC50 in the low μM range and 

complete dose response curves will be tested further. 

 

Cytotoxicity 

 

Cell culture. Human embryonic cells (HEK 293) were grown in DMEM 

supplemented with 10% FBS and 50 U of penicillin/ 50 µg of streptomycin. These 

cells were incubated at 37°C and 5% CO2 in 75cm2 flasks until 80% confluency was 

reached. At that point, they were either passaged to new flasks to allow expansion of 

growing cells or they were plated to be used in the assays. Cells were incubated 

with 0.05% Trypsin –EDTA at 37°C for 5 minutes for dissociation.  

 

Cell exposure to test compounds. Cells were plated on uncoated 96 well clear 

flat-bottom polystyrene tissue-culture plates (Corning). The plating density was 

5,000 cells per well in 190μl of media. The plates were incubated at 37ºC in an 
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incubator with 5% CO2 for 72 hs. A plate containing only cells was set aside for a no-

growth control (day 0). This control plate was incubated at 37ºC with 5% CO2 until 

cells attached (2-3 hs.). These control cells were immediately fixed as explained 

below. Two columns in the plate were reserved for the negative control. 

 

Cell fixation. Without removing the cell culture supernatant, 100 µl of cold 10% 

(wt/vol) trichloroacetic acid was added to each well. The plates were further 

incubated at 4ºC for 1 h. The plates were washed four times with slow-running tap 

water and excess water was removed. The plates were dried using a blow dryer. At 

this point the plates could be stored indefinitely at RT. 

 

Cell staining. A sulforhodamine B solution (Sigma) was prepared at 0.057% (wt/v). 

Each well was dispensed 100 μl of this staining solution. The plates were incubated 

at RT for 30 min and then quickly rinsed four times with 1% acetic acid to remove 

unbound dye. The plates were dried using a blow dryer. Stained and dried plates 

could be stored indefinitely at RT. 

 

OD measurement. To solubilize the protein-bound dye, 200 μl of a 10 mM Tris base 

solution (pH 10.5) was added to each well. The plates were shaken on a gyratory 

shaker for 5 min. The OD was measured at 510 nm in a microplate reader. 

 

Controls and active compounds’ dose response curve preparation. Ellipticine, 

compound 39, and all the actives found during the screening campaign were 
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obtained in powder from their respective sources. The powders were dissolved in 

DMSO to 1mM. Dilutions of prospective agonists and controls were made in distilled 

water as 20x stocks. Eight point dose response curves were done for each 

compound confirmed. Two-fold serial dilutions of a 2 mM stock solution were 

prepared for each compound and each concentration was plated by triplicate. 

Ellipticine was used as a positive control and two-fold serial dilutions of a 16 μM 

stock solution were prepared. Each concentration was plated by triplicate. 

 

Data collection, analysis, and interpretation. Data was collected using Excel 

(Microsoft) and analyzed using Graph Pad Prism 5 for Windows. The cell-growth 

control % was calculated as (sample OD – day 0 OD) / (negative control OD – day 0 

OD) * 100. From these results, the growth inhibition % was calculated as 100 – cell-

growth control %. The equation to fit the data was Y=Bottom + (Top-Bottom) / 

(1+10^(X-LogIC50)) (obtained from Graph Pad Prism 5 for Windows).IC50 values 

were derived from the dose response curves. Compounds that presented a 50% 

cell-growth inhibition or above were considered toxic and they were discarded for 

future investigation. 
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RESULTS AND DISCUSSION 

 

In chapter 3, several compounds were identified in an HTS. Here, we 

validated their activity. Compound 39 was used as an external control; this is one of 

only two reported small molecule selective agonists for the hOTR [204]. The 

pharmacological data available for this molecule is much reduced, so we decided to 

consider it as an active that has been obtained during the HTS. It underwent all the 

testing as every active we found. The data for this compound served as controls for 

the different stages of hit validation and also, we provided a more detailed 

pharmacological profile of it. 

Purified actives were validated in secondary assays including fluorescence-

based secondary screens for efficacy and inositol triphosphate release to confirm 

activation of the hOTR. The next step was to confirm that these compounds did not 

cause a non-specific calcium release through activation of endogenous receptors 

present in wild type CHO cells. Next, the remaining actives were tested against 

V1aR, V1bR, and V2R stably transfected CHO cell lines to assess selectivity for the 

OTR.  

 

Efficacy screen 

Dose response curves were done for each compound confirmed in the HTS 

to obtain EC50 and maximum efficacy. Only compounds that presented EC50 in the 

low μM range were tested further. A dose response curve of every hit confirmed 

during the HTS stage was evaluated. There were 17 agonist-like molecules and 14 
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positive allosteric modulators that were investigated (see Tables 3.2. and 3.3. in 

Chapter 3). Figures 4.1. and 4.2. show dose-dependent curves for the available 

active compounds from the HTS. The compounds BAS 00411435:826486, BAS 

02331893:830669, and Lycorine hydrochloride were not available in the purified 

powder form for purchase therefore they were not tested. For the investigation of 

positive allosteric modulators, OT was used at the EC20 concentration. The data 

obtained during the HTS could not be reproduced with the purified form of the 

following compounds: NSC 42414, karakoline, clemastine fumarate salt, 

thiocolchicoside, nicotinic acid, idaxozan hydrochloride, and metoprolol. Table 4.2. 

shows the EC50 values calculated for each compound. 

Evaluation of the dose response curves, maximum responses, and EC50 

values of the remainder of the compounds rendered 9 agonists that showed 

satisfactory results to be tested in the next step of the validation pipeline. Some of 

the agonistic compounds evaluated were discarded because their structures showed 

possible toxicity (contained As or Ag). Thonzonium bromide was discarded because 

it acted as a detergent.  

Unfortunately, none of the prospective allosteric modulators showed a 

consistent response in this stage of validation, therefore they were discarded for 

further investigation. ASN 05588520:820716, NSC 167452, and NSC 120877 

showed efficacies of 30% or lower at 10 μM in the dose response curves. Quercetin 

did not show a dose dependent response; the values at 50 μM were lower than at 10 

μM, and all the other points in the curve did not show a response. Because 

metrizamide showed a very significant variability, it was not considered a true active 
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and it was discarded. NSC 92893 was discarded as a potential modulator as it had a 

positive signal when tested for agonistic activity as well. 

The OTR / VR system belongs to the GPCR Class I subfamily which is 

considered to be more challenging when investigating for the identification of 

allosteric modulators (Dr. Arthur Christopoulos, personal communication). In order to 

identify positive allosteric modulators for the OTR and VR family, a larger compound 

library that was more structurally diverse needed to be screened in order to obtain 

successful hits. We have submitted our screen to the Scripps Research Institute 

Molecular Screening Center as explained in Chapter 3.  

 

Counter screens 

 

Non-specific Ca2+ release in fluorescence-based intracellular calcium 

mobilization assay. The next step was to confirm that the compounds selected 

from the efficacy assays did not cause a non-specific calcium release through 

activation of endogenous receptors present in wild type CHO cells. Figure 4.3. 

shows the dose response curves obtained for the agonistic-like molecules. Actives 

that caused a significant Ca2+ release in the wild type CHO cell line counter screen 

were discarded as they did not activate the OTR specifically. NSC 48458 showed a 

1.8-fold activation for the CHO-OTR cell line, therefore the signal read was 

considered to be caused by non-specific calcium release. Only compound 39 

showed specific activation of hOTR. More over, this molecule did not produce any 

Ca2+ release, even at 100 μM. This compound was the only candidate that  
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Fig 4.1. Dose response curves of agonists. Fluorescence-based intracellular 

calcium mobilization assay with stably transfected CHO-hOTR cells. The results are 

expressed as normalized % activation. 
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Fig 4.1. (continued). Dose response curves of agonists. Fluorescence-based 

intracellular calcium mobilization assay with stably transfected CHO-hOTR cells. The 

results are expressed as normalized % activation. 
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Fig 4.2. Dose response curves of positive allosteric modulators. Fluorescence-

based intracellular calcium mobilization assay with stably transfected CHO-hOTR 

cells. The results are expressed as normalized % activation. 
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Type Library Compound ID EC50 / (μM) 
 

Agonist NCI NSC 54044 52 

  NSC 92893 1400 

  NSC 339585 4700 

  NSC 625324 3.2 

  NSC 48458 1.8 

  NSC 106218 6200 

  NSC 86005 39.7 

  NSC 610930 74 

  NSC 307241 175 

 Prestwick Spiperone 2.5 

  Oxethazaine 12000 

  Thonzonium Bromide 7.7 

 Asinex BAS 02532822:831592 11 

  BAS 03008198:831063 5.5 

  Compound 39 0.2 

Modulator NCI NSC 167452 0.33 

  NSC 92893 2.5 

  NSC 120877 1.6 

 Prestwick Quercetin 3.0 

  Metrizamide 2.8 

 Asinex ASN 05588520:820716 230 

 

Table 4.2. EC50 calculated for the actives from pure compounds. Fluorescence-

based intracellular calcium mobilization assay with stably transfected CHO-hOTR 

cells. The results are expressed as normalized % activation. See efficacy section for 

an explanation of how compounds where discarded for further validation. 
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Fig 4.3. Dose response curves for the fluorescence-based intracellular calcium 
mobilization assay using wild type CHO cells for the identification of 
compounds that release Ca2+ non-specifically. The log [compound] is expressed 

in M. The results are expressed as normalized % activation. The signals observed 

for the wild type CHO cell line (blue) are compared to the signals obtained in the 

same assay with CHO-hOTR (red). Note that only compound 39 showed specific 

activation of hOTR. NSC 48458 showed a 1.8-fold activation for the CHO-OTR cell 

line, therefore it was not considered selective for this receptor.  
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underwent the next step of hit validation. 

 

Selective activation of the hOTR. Compound 39 underwent further testing to 

assess how selective this compound was for the hOTR when compared to the VR 

family. In the future, new compounds that show agonistic-like and allosteric 

modulation behavior will be tested as well against the VR family of receptors. 

 Compound 39 was reported previously as a selective agonist of the OTR, but 

its published pharmacological profile was limited to the comparison of the selectivity 

for the OTR against the V2R [204]. In this section, the pharmacological profile was 

extended to the complete VR family. The EC50 calculated for the hOTR and the 

hV1bR were 183 nM and 4.3 μM, respectively, showing a selectivity of 23x for the 

hOTR. The normalized % activation for V1aR and V2 was less than 20% even at 100 

μM (fig. 4.4.). The EC50 reported in the literature for a hOTR reporter gene assay 

was 33 nM, with a 25-fold selectivity compared to the V2R and no agonist activity for 

the V1a or V1b receptors [204]. 

 

Confirmation of actives by IP3 release assay 

Ligand induced modulation of the OTR receptor causes coupling of the Gq 

subunit and consequent activation of phospholipase-C which hydrolyzes membrane 

bound PIP2 into diacylglycerol and free IP3 (the first effector molecule of the signaling 

cascade) as shown in figure 4.5. This IP3 release is directly related to GPCR 

activation, therefore, quantification of IP3 species correlates with receptor activation 

and Gq coupling. To confirm specific activation of the OTR, quantification of the IP3  
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Fig 4.4. Dose response curves for the fluorescence-based intracellular calcium 
mobilization assay for compound 39 against hOTR and the VR family. Results 

are reported as normalized % activation. Each data point is mean ± SD (n=4). 
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species were tested as a response of dose dependent concentrations of the active 

compounds. 

A scintillation proximity assay (SPA) was used to monitor IP3 release to 

confirm activation of the hOTR [274]. Phospholipase C (PLC) catalyzes the 

hydrolysis of PtdIns(4,5)P2, which results in both formation of the second 

messengers Ins(1,4,5)P3 and diacylglycerol and alteration in the membrane 

association and/or activity of PtdIns(4,5)P2-binding proteins. This method for 

quantification of intracellular inositol phosphate production applied a commercially 

available yttrium silicate RNA binding resin that binds tritiated IP3 but not PIP2 [274]. 

LiCl was used to inhibit inositol phosphate phosphatases, allowing quantification of 

[3H] inositol phosphates accumulated as a result of PLC-catalyzed hydrolysis of 

[3H]PtdIns(4,5)P2 caused by receptor activation (fig 4.5.). This test was used to 

validate selective activation of the hOTR as PIP2 is directly hydrolyzed as a result of 

Gq coupling caused by receptor activation. 

A dose response curve of IP3 release in OT-treated cell extracts was 

performed to standardize the signal. Background was determined using cells treated 

with buffer only and did not result in IP3 release (data not shown). A dose response 

curve of the OTR selective antagonist (L-371,251, Ki= 4.6 nM) was tested to further 

validate the assay by showing the dependence of OTR activity (fig. 4.9.). The IC50 

calculated from a dose response curve for the selective OTR antagonist, L-371,251, 

was 1.7 µM for this assay. The EC50 calculated for OT and compound 39 were 3.8 

nM and 893 nM, respectively. OT was 236x more potent than compound 39 (fig. 

4.6.). The efficacy for compound 39 was decreased 40% when compared to OT  
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Fig. 4.5. PLC- Catalyzed Hydrolysis of [3H] PIP2 caused by receptor activation. 
A scintillation proximity assay (SPA) was used to measure accumulation of [3H] 

inositol phosphates. LiCl prevented inositol phosphates to further convert into myo-

inositol. Figure was obtained from [275]. 
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Fig. 4.6. Monitoring of IP3 release to confirm activation of the hOTR. An inositol 

phosphate scintillation proximity assay (SPA) was used to validate the activation of 

the hOTR. A. OT (red) and Compound 39 (blue) dose response curves. The values 

are expressed as normalized % activation of the hOTR. The EC50 calculated were 

3.8 nM and 893 nM, respectively. Each data point was mean ± SD (n=3). B. Dose 

response curve for L-371,251, a selective OTR antagonist (green). [OT] was 100 

nM. The IC50 calculated was 1.700 μM. Each data point was mean ± SD (n=4). 

A B



 167 
 

 

activation. This could be due to the pharmacology involved in activation of the hOTR 

by compound 39 which caused a smaller amplification of the signal at least in the 

time frame of this experiment. The OTR selective antagonist used above abrogated 

the activation of the OTR by compound 39 (data not shown). The results shown here 

confirmed that compound 39 activated the hOTR and coupled to the Gq pathway. 

 

Cytotoxicity evaluation of actives 

In order to move forward it was necessary to assess the in vitro drug-induced 

cytotoxicity of compound 39 before starting any animal testing [276]. A cytotoxocity 

colorimetric assay was used to assess inhibition of cell growth after exposure to 

various concentrations of the active molecules. This assay is used by the NCI 

disease oriented in vitro anticancer-drug discovery screen [277].The sulforhodamine 

B (SRB) method has been optimized for the toxicity screening of compounds to 

adherent cells in a 96-well format. This assay is used for cell density determination, 

based on the measurement of cellular protein content [276, 277]. The HEK-293 cell 

line was chosen as a representative human cell line that is easily grown and readily 

available. Human hepatocytes are more commonly used for this experiment, but 

they were not available at the time of the experiment. This cell line is commercially 

available only at specific times of the year.  

HEK 293 cells were exposed to compound 39 for 3 days at various concentrations. 

A dose response curve of the ellipticine was used as a positive control. Cell growth 

inhibition was reported and the threshold implemented to consider a compound toxic 

was 50% or above. Compound 39 presented a cell growth inhibition of less than 
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30% even at 100 μM. The positive control ellipticine presented an IC50 of 73nM that 

was calculated from its dose response curve (fig 4.7.). We concluded that compound 

39 was not cytotoxic and could be implemented in animal studies. 

 

Our validation pipeline has demonstrated that compound 39 is an excellent 

OTR agonist (see fig. 4.8.). It presents 23 x selectivity for the OTR versus the VR 

family; it activates the receptor specifically as demonstrated through the IP 

quantification experiment, and it is not toxic in vitro. This compound is an excellent 

candidate to be tested in animals to evaluate receptor activation and its consequent 

behavior modifications. Also, compound 39 did not show significant activation of a 

battery of receptors screened at the PDSP. The smallest affinity calculated was for 

the muscarinic M2, M3, M4, and M5 subtype receptors (high nM range in binding 

assays). Further investigation showed that compound 39 did not activate these 

receptors significantly in a functional assay. More over, there was no significant 

activation of the h-ERG receptor (data not shown).  

The outcome of our medium-throughput campaign has not been as 

successful as anticipated. The only compound considered active enough to enter 

animal studies is one that was previously reported as a OTR agonist. . This result is 

not discouraging as we had expected a low number of candidates given that false 

positives are inherent to any HTS. In addition, the high homology of the OTR and the 

VR family represents an important obstacle to overcome. The lack of reproducibility 

during the efficacy screen suggests that a larger library needs to be screened to 

cover a large structural diversity space. We have submitted all our data to the
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Fig. 4.7. Cell toxicity assessment of compound 39 in a SRB assay using HEK-
293 cells. Cell growth inhibition was evaluated as a marker for cytotoxicity. The 

positive control ellipticine (red) showed an IC50 of 73nM. Compound 39 (blue) did not 

inhibit cell growth significantly. Each data point was mean ± SD (n=4).  
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Fig. 4.8. Pipeline flowchart. Tests run are in chronological order. The cell line used 

is displayed, together with the number of compounds that presented a successful 

outcome at each stage.  
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Scripp’s HTS center directed by Dr. Peter Hodder. We are waiting for our screen to 

be implemented at this facility. We expect to have results within 6 months. 

 Another caveat that has been foreseen for compounds being considered for 

animal testing stage is the selectivity between the hOTR and the mOTR. Figure 4.9. 

shows the aligned sequences for the human, mouse, and rat OTR (BLAST was used 

to investigate homology of these receptors, www.blast.ncbi.nlm.nih.gov). The % 

identity for the different OTRs is shown in table 4.3. To investigate this matter 

further, the sequences that form the oxytocin natural binding pocket were aligned 

[17]. These sequences include the 1-37 and 92-116 sequences that bind to the 

linear part of oxytocin, and the 173-201 sequence that interacts with the circular 

section of oxytocin. Table 4.4. shows the homology of these segments. These 

receptors share a high sequence identity, including the orthosteric binding pocket, 

therefore we anticipate that the small molecules that are active at the human 

receptor in our cell models, will activate the receptors in a similar fashion in our 

animal models. 
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h   1        MEGALAANWS AEAANASAAP PGAEGNRTAG PPRRNEALAR VEVAVLCLIL LLALSGNACV
m  1        MEGTPAANWS IELDLGSGVP PGAEGNLTAG PPRRNEALAR VEVAVLCLIL FLALSGNACV
r    1        MEGTPAANWS VELDLGSGVP PGEEGNRTAG PPQRNEALAR VEVAVLCLIL FLALSGNACV

h   61      LLALRTTRQK HSRLFFFMKH LSIADLVVAV FQVLPQLLWD ITFRFYGPDL LCRLVKYLQV
m  61      LLALRTTRQK HSRLFFFMKH LSIADLVVAV FQVLPQLLWD ITFRFYGPDL LCRLVKYLQV
r    61      LLALRTTRHK HSRLFFFMKH LSIADLVVAV FQVLPQLLWD ITFRFYGPDL LCRLVKYLQV

h  121     VGMFASTYLL LLMSLDRCLA ICQPLRSLRR RTDRLAVLAT WLGCLVASAP QVHIFSLREV
m 121     VGMFASTYLL LLMSLDRCLA ICQPLRSLRR RTDRLAVLAT WLGCLVASAP QVHIFSLREV
r  121      VGMFASTYLL LLMSLDRCLA ICQPLRSLRR RTDRLAVLAT WLGCLVASAP QVHIFSLREV

h  181     ADGVFDCWAV FIQPWGPKAY ITWITLAVYI VPVIVLAACY GLISFKIWQN LRLKTAAAAA
m 181     ADGVFDCWAV FIQPWGPKAY VTWITLAVYI VPVIVLAACY GLISFKIWQN LRLKTAAAAA
r  181      ADGVFDCWAV FIQPWGPKAY VTWITLAVYI VPVIVLAACY GLISFKIWQN LRLKTAAAAA

h  241     AEAPEGAAAG DG GRVALARV SSVKLISKAK I RTVKMTFII V LAFIVCWTP F FFVQMWSVW D
m 241     AAEGSDAAAG A   GRVALARV SSVKLISKAK I RTVKMTFII V LAFIVCWTP F FFVQMWSVW D
r  241      AAEGNDAAAG A   GRVALARV SSVKLISKAK I RTVKMTFII V LAFIVCWTP F FFVQMWSVW D

h  301     ANAPKEASA F IIVMLLASL N SCCNPWIYM L FTGHLFHEL V QRFLCCSAS Y LKGRRLGET S
m 301     VNAPKEASA F IIVMLLASL N SCCNPWIYM L FTGHLFHEL V QRFLCCSAS Y LKGRRLGET S
r  301      VNAPKEASA F IIVMLLASL N SCCNPWIYM L FTGHLFHEL V QRFLCCSAS Y LKGRRLGET S

h  361     ASKKSNSS S F VLSHRSSSQ R SCSQPSTA
m 361     ISKKSNSS T F VLSHRSSSQ R SCSQPSTA
r  361     VSKKSNSS T F VLSRRSSSQ R SCSQPSSA

h   1        MEGALAANWS AEAANASAAP PGAEGNRTAG PPRRNEALAR VEVAVLCLIL LLALSGNACV
m  1        MEGTPAANWS IELDLGSGVP PGAEGNLTAG PPRRNEALAR VEVAVLCLIL FLALSGNACV
r    1        MEGTPAANWS VELDLGSGVP PGEEGNRTAG PPQRNEALAR VEVAVLCLIL FLALSGNACV

h   61      LLALRTTRQK HSRLFFFMKH LSIADLVVAV FQVLPQLLWD ITFRFYGPDL LCRLVKYLQV
m  61      LLALRTTRQK HSRLFFFMKH LSIADLVVAV FQVLPQLLWD ITFRFYGPDL LCRLVKYLQV
r    61      LLALRTTRHK HSRLFFFMKH LSIADLVVAV FQVLPQLLWD ITFRFYGPDL LCRLVKYLQV

h  121     VGMFASTYLL LLMSLDRCLA ICQPLRSLRR RTDRLAVLAT WLGCLVASAP QVHIFSLREV
m 121     VGMFASTYLL LLMSLDRCLA ICQPLRSLRR RTDRLAVLAT WLGCLVASAP QVHIFSLREV
r  121      VGMFASTYLL LLMSLDRCLA ICQPLRSLRR RTDRLAVLAT WLGCLVASAP QVHIFSLREV

h  181     ADGVFDCWAV FIQPWGPKAY ITWITLAVYI VPVIVLAACY GLISFKIWQN LRLKTAAAAA
m 181     ADGVFDCWAV FIQPWGPKAY VTWITLAVYI VPVIVLAACY GLISFKIWQN LRLKTAAAAA
r  181      ADGVFDCWAV FIQPWGPKAY VTWITLAVYI VPVIVLAACY GLISFKIWQN LRLKTAAAAA

h  241     AEAPEGAAAG DG GRVALARV SSVKLISKAK I RTVKMTFII V LAFIVCWTP F FFVQMWSVW D
m 241     AAEGSDAAAG A   GRVALARV SSVKLISKAK I RTVKMTFII V LAFIVCWTP F FFVQMWSVW D
r  241      AAEGNDAAAG A   GRVALARV SSVKLISKAK I RTVKMTFII V LAFIVCWTP F FFVQMWSVW D

h  301     ANAPKEASA F IIVMLLASL N SCCNPWIYM L FTGHLFHEL V QRFLCCSAS Y LKGRRLGET S
m 301     VNAPKEASA F IIVMLLASL N SCCNPWIYM L FTGHLFHEL V QRFLCCSAS Y LKGRRLGET S
r  301      VNAPKEASA F IIVMLLASL N SCCNPWIYM L FTGHLFHEL V QRFLCCSAS Y LKGRRLGET S

h  361     ASKKSNSS S F VLSHRSSSQ R SCSQPSTA
m 361     ISKKSNSS T F VLSHRSSSQ R SCSQPSTA
r  361     VSKKSNSS T F VLSRRSSSQ R SCSQPSSA

 
 
Fig. 4.9. Primary sequence alignments of the OTR for human (h), mouse (m), 
and rat (r). The conserved residues are outlined in black. Sequences were obtained 

from NCBI protein database. NCBI reference sequences: human: NP_000907; 

mouse: NP_001074616; and rat: NP_037003. BLAST was used to investigate 

homology of these receptors (www.blast.ncbi.nlm.nih.gov). The % identity for the 

different OTRs is shown in table 4.3. 
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Organism 

 

NCBI Reference Sequence

 

Number of aminoacids 

 

% identity 

Homo Sapiens NP_000907.2 389 --- 

Mus musculus NP_001074616.1 388 92 

Rattus norvegicus NP_037003.2 388 91 

 

Table 4.3. Similarity among the OTR in human, mouse, and rat. The protein 

sequences were aligned using the tool BLAST. The similarities were expressed in 

percent identity compared to the human sequence. The NCBI reference protein 

sequence and the total number of aminoacids are shown. 

 

 

 

Sequence 

 

 

Organism  

1-37 

 

92-116 

 

173-201 

 

Mus musculus 

 

75 

 

100 

 

97 

 
Rattus norvegicus

 

72 

 

100 

 

97 

 
Table 4.4. Similarity between the human, the mouse, and rat OTR protein 
sequences. The protein sequences were aligned using the tool BLAST. The 

similarities were expressed in percent identity compared to the human sequence. 
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FUTURE PLANS 

 

New hits will be found and tested when the ultrahigh-throughput screen is 

finished. We confirmed that compound 39 is a useful tool that will help elucidate how 

complex behavior works and the involvement of oxytocin in regulation of these 

behaviors and it is ready to be tested in animals. It also serves as a new potential 

lead for a drug discovery campaign in the treatment of specific neuropsychiatric 

disorders. The strong pharmacological profile of this compound will help us evaluate 

the hypothesis that small-molecule activation of the OTR can influence complex 

behaviors in animal models. 

 The cell- based assay was transferred to the MLPCN and it is waiting in 

queue for assay implementation. The primary uHTS campaign will begin 

immediately following the completion of the assay implementation. The confirmed 

actives will undergo efficacy screening in this center. The compounds that arise from 

this stage will be transferred to our laboratory where the remaining validation 

process will be done. After prioritizing the actives, a hit to lead stage will begin. 

Mainly, this stage will focus in structure-activity relationship analysis and setting the 

objectives for the chemistry plan to synthesize analogs of the most promising 

compounds. 

 In the case that the small molecules that activate the human OTR do not 

show similar affinity for the mouse receptor, stable CHO-mOTR cell lines could be 

developed to test activation of this receptor during the cell-based assays. Rat 

receptor could be also transfected into CHO cells in the future in the event that it is 

recommended to perform animal testing in this species as well.  



CHAPTER 5 

 

MOUSE MODELS OF COMPLEX BEHAVIOR AFFECTED 

BY THE OXYTOCIN PATHWAY 

 

INTRODUCTION 

 

This chapter’s aim was to determine clinically-relevant behavioral effects of 

OT and the small-molecule OTR agonists and positive allosteric modulators 

evaluated and validated in Chapters 4 and 5. OT’s effects were investigated in 

specific animal models that were considered relevant to several neuropsychiatric 

diseases, such as schizophrenia, autism spectrum disorders, anxiety, and 

depression. These robust mouse models provide translational tools for developing 

effective treatments [278]. 

As a first step, we assessed the effects of OT in relevant mouse models to 

obtain a baseline response. In addition, we tested the efficacy of cmpd39 (cmpd 39) 

as the first OTR agonist in the regulation of complex behaviors. In the future, 

validated OTR agonists and modulators will be used in the behavioral tests 

established here to determine their ability to augment activity of the OT pathway. 

The key to assessing the effects of OT and cmpd39 relied on the selection of 

established animal models for the different paradigms that we were investigating. 
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The tests used included: toxicity test, self-grooming, hot plate nociception test, 

elevated plus and zero mazes, social memory duration test, acoustic startle 

response (ASR) and prepulse inhibition (PPI) test, and open field locomotion test. 

These tests are validated indicators of clinically relevant behaviors. 

Our first approach was to reproduce the published regulation of self-grooming 

behavior elicited by OT. Injection of OT induces self-grooming of the facial, truncal, 

and genital areas of the body in male and female rats and mice. This characteristic 

behavior is an indicator of activation of central OTR [124, 125, 279-281], and allows 

a simple assessment of drug administration, blood-brain-barrier crossing, and 

specific activation of the OTR. 

The oxytocinergic system has been reported to have a modulatory function on 

nociception [129, 282, 283]. The hot plate nociception test is a well-established 

animal model to evaluate analgesic effects of drugs. Analgesia testing in this model 

allows quantification of pain threshold, showing a correlation between the efficacy of 

a compound and the latency to react to a painful stimulus [284-286].  

Anxiety-like behaviors are present in many psychiatric diseases; therefore, 

including a battery of tests that could evaluate anxiolytic-like effects of drugs tested 

would provide valuable information. The elevated plus maze (EPM) is a test based in 

the natural tendency of mice to actively explore a new environment versus the innate 

fear of open spaces [287]. As a result of the aversive properties of the open 

quadrants, animals spend a greater proportion of time in the closed quadrants. 

Compounds that increase the percentage time an animal spends in the open 

quadrants of the maze are considered to exhibit anxiolytic-like activity. The elevated 
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zero maze (EZM) is a modification of the EPM that consists of a circular platform 

that lacks the central area. The EZM has been pharmacologically validated for mice, 

demonstrating the ability to detect anxiolytic-like activity of reference anxiolytic 

compounds [108]. 

The mouse phenotype for autism is defined by behavioral criteria relevant to 

its three diagnostic symptoms: aberrant reciprocal social interactions, deficits in 

social communication, and stereotyped, ritualistic, repetitive behaviors with narrow, 

restricted interests [144]. The challenge is to design mouse behavioral tasks with 

sufficient analogies to the three diagnostic symptoms. Behavioral neuroscientists are 

generating useful assays for autism-like social and communication deficits, motor 

stereotypies, repetitive behaviors, and perseverative habits [278]. Modeling the 

behavioral symptoms of autism in mice has shed light on the genetic mechanisms 

underlying social deficits. The first diagnostic symptom, social deficits, is perhaps the 

most straightforward to model in mice. Most strains of mice show high levels of 

social interaction. The development of social familiarity in rodents depends 

predominantly on olfactory cues and can critically influence reproductive success. 

Researchers have operationally defined this memory by a reliable decrease in 

olfactory investigation in repeated or prolonged encounters with a conspecific [62, 

63].  

Acoustic startle is the reflex response to a sudden, loud noise. Prepulse 

inhibition (PPI) is the suppression of the normal response to a startling stimulus 

when a stimulus is immediately preceded by a weak prestimulus or prepulse [288]. A 

number of studies have shown that schizophrenic and autistic patients have an 
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impaired prepulse inhibition response [138, 185, 188, 189, 191, 192]. The 

impairment observed in schizophrenic is thought to reflect an underlying problem 

with inhibitory mechanisms similar to those used for sensorimotor gating [288, 289]. 

Rats and mice show schizophrenic-like reductions in prepulse inhibition when 

treated with dopaminergic agonists [191]. The prepulse inhibition paradigm is an 

ideal animal model to study the mechanisms underlying the sensorimotor gating 

deficits observed in schizophrenia and for screening new antipsychotic therapeutics 

[138, 188, 189, 288, 290-293]. 

The open field test is one of the oldest, most extensively used, and simplest 

measures of mouse and rat emotional behavior. Motor activity underlies almost 

every mouse behavioral paradigm. Behavioral measures of the open field 

locomotion have been proposed as indices of anxiety. Some additional measures 

most commonly assessed are: rearing behavior, which decreases in an anxiogenic 

environment, and thigmotaxis, the proportion of time the animal remains close to the 

walls of the open field. Increasing the stress of the animal, results in decreased 

activity [288]. In addition, overall activity tends to decrease over time allowing 

quantification of habituation to the novelty of the open field [294]. 

Our goal was to obtain new small molecules that influence complex behavior. 

By assessing the efficacy of cmpd39 in these well established behavioral tests we 

have provided evidence to show that a small molecule can modify complex behavior 

in mice. The results obtained for cmpd39 show that small molecules can serve as 

tools to investigate the role of OT in complex behavior and provide new leads in the 

treatment of neuropsychiatric disorders.  
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METHODS AND MATERIALS 
 

 
Materials. All reagents were ACS reagent grade and used without further 

purification unless otherwise noted. Oxytocin (Bachem), d-amphetamine sulfate 

(Sigma), and (+) MK-801 hydrogen maleate (Sigma) were purchased in the powder 

form. Sterile normal saline solution (0.9% NaCl) and isoflurane were purchased as a 

liquid. Cmpd39 was synthesized by the Center for Integrative Chemical Biology and 

Drug Discovery at UNC-CH. 

 

Animals. Intracerebro-ventricular (ICV) cannulated and non-cannulated male mice 

from two inbred strains, C57BL/6J and BALB/C, and ovariectomized C57BL/6J 

females were purchased from The Jackson Laboratory (Bar Harbor, ME). Mice were 

5-8 weeks of age at the time of testing. All ICV cannulated animals were housed 

individually and all the non-cannulated ones were housed in group cages, separated 

by gender, four to five per plastic cage, and provided with food and water ad libitum. 

The housing room was maintained at 23 °C on a 12-h light/dark cycle (lights off at 7 

PM). All procedures were conducted in strict compliance with the policies on animal 

welfare of the National Institutes of Health and the University of North Carolina 

(stated in the “Guide for the Care and Use of Laboratory Animals,” Institute of 

Laboratory Animal Resources, National Research Council, 1996 edition) and 

approved by the University of North Carolina Institutional Animal Care and Use 

Committee.  
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Drug stock solutions. OT was dissolved to 5 mg/ml in a 5% acetic acid and 0.9% 

NaCl solution (normal saline, NS). Doses tested were diluted with NS. Cmpd39 was 

dissolved to 5 mg/ml in 15% DMSO, 0.5% Tween-20, and NS solution. MK-801 and 

amphetamine were dissolved with NS.  

 

OT and cmpd39 testing. Doses tested were expressed in mg/kg based on the 

weight of the animals. The injection volume was 10 ml/kg body weight. Normal 

saline was used as a vehicle (negative) control.  

 
 
 

Behavior tests 

Toxicity test. Male C57BL/6J mice were injected with highly concentrated solutions 

of the compounds to be tested. The concentration of these solutions was chosen 

according to available data from the HTS and from the literature when possible. The 

animals were injected intraperitoneally with OT at 10 mg/kg or cmpd39 at 75 mg/kg 

and housed individually. They were observed periodically for five consecutive days 

and evaluated for general health, including body weight, appearance of the fur and 

whiskers, body posture, and normality of gait [287]. Signs of distress or sickness 

were particularly looked for like locomotor function, dehydration, neurological 

damage, etc. If after this period of time, there were no obvious signs of toxicity, the 

compounds were considered safe to be tested at those concentrations in the 

animals. 
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Self-grooming behavior test. Animals that were infused ICV were previously 

anesthetized with isoflurane. OT was injected at a 0.5 µg/µl dose in a 2 µl volume 

during a 40 second period and an additional 40 seconds before removing the 

cannula to allow pressure stabilization after injection. Control animals received 

normal saline vehicle alone. Behavioral testing started 10 min after ICV injection. In 

a separate group of animals, OT was injected intraperitoneally (i.p.) and behavioral 

testing started after 10 min.  

Behavioral observations were made blind to treatment. Grooming activity was 

scored as follows: the mice were placed individually into transparent plastic cages 

(24 × 12 × 24 cm) in a low-noise room. The behavior of each mouse was observed 

every minute for 10 sec beginning 10 min after animals were placed in the boxes. 

The occurrence of the following behavioral elements of grooming was recorded: 

vibration of the forepaws, face washing, body grooming, scratching, paw licking, 

head shaking, body shaking, and genital grooming. Behavioral observations lasted 

90 min.  

 The data was collected in Microsoft Excel 5 and analyzed by adding the 

grooming occurrences in a 5 min period. A positive grooming behavior represented 1 

and the absence of this behavior was scored as 0. The maximum possible score per 

5 min interval was 5. 

 

Hot plate nociception (HPN) test. We performed this test with three groups of 

C57BL/6J male mice: non-cannulated, ICV cannulated awake (no anesthesia),and 

ICV slightly anesthesized. We initially obtained a baseline of pain threshold. We 
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tested OT dose (0.5 and 1 µg/µl, ICV) and injection pretreatment time ((25, 30, and 

35 min prior to the HPN test). Saline injected mice were used as controls.  

Mice were confined to a horizontal hotplate surface at 55°C and observed for 

responses including licking of paws, jumping, or vocalizing. Animals were removed 

immediately after showing a response, or after 40 sec of being placed on the 

hotplate. During each test, a plastic cylinder was used to confine the animal on the 

hotplate surface. The latency to exhibit an aversive response to the heated surface 

was recorded by using a hot-plate analgesia meter (IITC, Life Science, Model 39, 

Woodlands Hills, CA) (see fig.5.1.A.). Data was collected and analyzed using 

GraphPad Prism 5. Analysis of variance (ANOVA) was used to evaluate the 

statistical significance of the results. 

 

Elevated Plus Maze (EPM) test. ICV cannulated Balb/C and C57BL/6J individually 

housed male mice were tested. The EPM, which was elevated 50 cm from the floor, 

consisted of two opposite facing open arms (30 x 5 cm) and two closed arms (30 x 5 

cm with 15-cm-high walls) with a central area (8 x 8 cm) (fig.5.1.B.). Mice were 

placed on the central platform, facing an open arm and they were allowed to freely 

explore the maze. The mice were observed and scored for 5 min. An arm entry was 

defined by two paws entering an arm of the EPM [295]. The surface and walls of the 

EPM were thoroughly cleaned with fresh wet towels after each animal was tested. 

OT or saline were administered ICV to slightly anesthesized or awake animals 20 or 

30 min before starting the test. Various pretreatment times were used to assess 

optimal drug effect. 



 183 
 

 The number and duration of entries into open or closed arms were 

simultaneously scored by a treatment-blind observer. Percent open arm time was 

calculated as 100× (time spent on the open arms/ (time in the open arms + time in 

the closed arms)). Percent open arm entries was calculated using the same formula 

[296]. Data was collected and analyzed using GraphPad Prism 5. Analysis of 

variance (ANOVA) was used to evaluate the statistical significance of the results. 

 

Elevated zero maze (EZM) test. ICV cannulated Balb/C and C57BL/6J individually 

housed male mice were tested. The EZM is a circular platform (outer diameter = 60 

cm, width = 5 cm) made of metal that is elevated on legs 55 cm above the floor. The 

EZM is composed of 4 quadrants, 2 open and 2 closed, each of equal length 

(fig.5.1.C.). The 2 closed quadrants, which are located opposite each other and 

separated by open quadrants, have metal Plexiglas walls that rise 30 cm above the 

surface of the maze. The outer edges of the open quadrants have perpendicular lips 

of metal that are 3 cm high. Each test began with placement of the subject in the 

middle of one of the closed quadrants and they were allowed to freely explore the 

maze. Mice were observed and scored for 5 min. An arm entry was defined by two 

paws entering an arm of the EZM. OT or saline were administered ICV to slightly 

anesthesized or awake animals 20 or 30 min before starting the test, and the surface 

and walls of the EZM were thoroughly cleaned with fresh wet towels after each 

animal was tested. Various pretreatment times were used to assess optimal drug 

effect. 
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 The number and duration of entries into open or closed arms were 

simultaneously scored by a treatment-blind observer. Percent open arm time was 

calculated as 100× (time spent on the open arms/ (time in the open arms + time in 

the closed arms)). Percent open arm entries was calculated using the same formula 

[296]. Data was collected and analyzed using GraphPad Prism 5. ANOVA was used 

to evaluate the statistical significance of the results. 

 

Social memory duration test. ICV cannulated C57BL/6J males: the male mouse 

was introduced to a stranger female for 5 min during four consecutive days in his 

own cage to allow habituation to a stranger and avoid future aggressive behavior. 

Cages and bedding were changed daily after encounters. Animals that showed more 

mounting activity or aggression toward the female were not tested further. The test 

was held in the male’s cage to permit establishment of a home-cage territory. After 

habituation, mice were separated into two groups: one was tested with the same 

female and the other with a different female in every encounter. All the male mice 

were exposed to a novel female (F1) for 5 min (t=0 min). After this first encounter 

period, the female was removed from the cage and placed in a new cage to avoid 

acquiring odors from the grouped house cage. The same female was reintroduced in 

the cage after 10 min for 5 min (t=15 min), after which they were returned to the 

same holding cage. The same female was reintroduced for another 5 min after 60 

min (t=80 min). The different female group males were introduced to a novel female 

(F2) for 5 min after 60 min (t=65 min) and placed in a new holding cage after this 

encounter. After another 10 min the same female (F2) was placed in the cage with 
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the male for 5 min (t=75 min). To investigate longer inter-trial intervals (2 h), male 

mice were divided into the same two groups to be exposed to the same or different 

female. All the male mice were exposed to a novel female (F1) for 5 min (t=0 min). 

After a 2 h separation interval, during which the females were kept in individual 

cages, either the same (F1) or a different (F2) female was placed in the male’s cage 

to allow investigation for 5 min a third and shorter inter-trial interval was tested (30 

min). The same procedure as the 2 h interval was followed with a 30 min inter-trial 

interval (t=35 min). Trials were recorded and coded by an operator blind to the 

treatment (same vs. different female). Animals were considered investigating if they 

were proximally oriented towards the female or in direct contact with it, sniffing 

(specially the anogenital area), close following, grooming, generally inspecting any 

body surface of the female, nosing, and pawing [297]. The total investigation time 

was scored.  

ICV cannulated Balb/C: the test was performed in a special cage dedicated to 

social investigation. A three chambered Plexiglass box with wire containers was 

used for this test (see fig.5.1.E.). The chambers doors were removed to allow free 

movement of the subject. On the test day, the cages of the subject mice were 

brought from the vivarium to a holding area outside of the test room, 1 h before the 

start of behavioral testing. C57BL/6J mice were used as stranger subjects. Balb/C 

male mice were injected a 1 µg/µl OT solution ICV. The subject mouse was placed 

into the center chamber after 10 min and allowed to investigate the new environment 

for 10 min (habituation). An empty round wire cage was placed in the center of one 

of the side chambers. The wire holding cage was a stainless steel inverted pencil 
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cup, 11 cm high, composed of a solid 10.5 cm diameter bottom and stainless steel 

bars spaced at 1 cm intervals. A stranger mouse was placed in another identical 

round wire cage in the center of the other side chamber (see fig.5.1.F.) A plastic cup 

containing a heavy lead weight was placed on top of each wire cage, to prevent the 

stranger from moving the cage around the floor, and to prevent the subject from 

climbing onto the flat top of the wire cage. Exploration of the three chambers by the 

subject mouse was recorded for 30 min. A second stranger was introduced into the 

empty wire cage and recording resumed for another 30 min to evaluate preference 

for social novelty. The cages were cleaned between subjects [144, 287, 298]. Time 

spent in direct sniffing of the strangers by the subject mouse and direct sniffing of 

the empty wire cage by the subject mouse were scored. The total investigation time 

for each stranger was scored. Data are expressed as mean ± s.e.m. Data was 

analyzed by overall analysis of variance. When the ANOVA indicated significant 

difference among treatments, individual groups were compared using the Bonferroni 

post hoc test for multiple comparisons.  

 

Acoustic Startle Response (ASR) and prepulse inhibition (PPI) test. Animals 

were tested with a San Diego Instruments SR-Lab system (see fig 5.1.G.). Male 

C57BL/6J mice were placed in a small Plexiglas cylinder within a larger, sound-

attenuating chamber (San Diego Instruments). The cylinder was seated upon a 

piezoelectric transducer, which allowed vibrations to be quantified and displayed on 

a computer (see fig 5.1.H.). The chamber included a house light, fan, and a 

loudspeaker for the acoustic stimuli (bursts of white noise). Background sound levels 
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(70 dB) and calibration of the acoustic stimuli were confirmed with a digital sound 

level meter. 

Drug, OT or cmpd39, were administered i.p. 50 min before tests were 

conducted. The psychoto-mimetics MK-801 or d-amphetamine were administered 

s.c. 5 and 15 min before the start of the test, respectively. Each mouse was tested 

only once as MK-801 showed an accumulative effect. OT was administered i.p at 1, 

2, and 3 mg/kg. Cmpd39 was administered i.p. at 10, 30, 50, 75, and 100 mg/kg. 

The doses used for MK-801 and amphetamine were 0.5 and 1 mg/kg and 9, 10, 14, 

and 15 mg/kg, respectively. All the dilutions were made using 0.9% NaCl (normal 

saline). Injection volume was 1 ml/100 g body weight. 

Each test session consisted of 42 trials following a five-minute habituation 

period. The seven different types of trials were: no-stimulus trials, trials with the 

acoustic startle stimulus (40 ms; 120 dB) alone, and trials in which a prepulse 

stimulus (20 ms; 74, 78, 82, 86, or 90 dB) had onset 100 ms before the onset of the 

startle stimulus. The different trial types were organized in blocks of 7, in randomized 

order within each block, with an average inter-trial interval of 15 s (range: 10 to 

20 s). Measures were taken of the startle amplitude for each trial, defined as the 

peak response during a 65-ms sampling window that began with the onset of the 

startle stimulus. An overall analysis was performed for each subject's data for levels 

of startle response and prepulse inhibition at each prepulse sound level. The 

prepulse inhibition was calculated as 100 − [(response amplitude for prepulse 

stimulus and startle stimulus together / response amplitude for startle stimulus 

alone) × 100]) [299].  
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Data was analyzed using GraphPad Prism 5. For acoustic startle PPI studies, 

overall repeated measures ANOVAs were used for each drug dose and intensity 

level of the acoustic stimulus for startle response and prepulse inhibition. Post-hoc 

repeated measures ANOVAs were used to determine drug effects at each dB level 

only when the within-group ANOVA indicated a significant effect of drug treatment. 

For all comparisons, significance was set at p < 0.05. 

 

Open field locomotion test. Locomotor activity, including horizontal activity, 

ambulation (total distance traveled), fine movements (repeated breaking of the same 

set of photobeams), rearing movements, and time spent in the center region of the 

chamber, was assessed in a photocell-equipped automated open field 

(40 cm × 40 cm × 30 cm; Versamax system, Accuscan Instruments). Testing was 

conducted in the morning or early afternoon, during the light phase of the mouse 

light/dark cycle. Activity chambers were contained inside sound-attenuating boxes, 

equipped with houselights and fans (see fig 5.1.D.) [287]. Mice were tested 

immediately after the acoustic startle test. Doses evaluated for OT, cmpd39, MK-

801, and d-amphetamine were explained above (see ASR test). 

Activity data were collected for each mouse over a 90 0r 120 min time course, 

beginning when the mouse was first placed in the testing chamber. Data were 

collected in five-minute intervals. Locomotion was analyzed by calculating horizontal 

and vertical beam breaks, distance travelled, and time spent in the center. The 

distance traveled in each five-minute interval was measured as the total of all 

vectored X–Y coordinate changes. For each group of mice, the mean ± SEM was 
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calculated for each five-minute time interval. Data from each drug dose were first 

tested by repeated measures ANOVA. A separate analysis of the locomotor data 

was performed in order to more clearly present overall drug effects. In this case, 

data from each drug dose were summed for each 30 min of the 90 or 120 min 

sessions, and were tested by repeated measures ANOVAS. Post-hoc comparisons 

were performed using Bonferroni tests. 
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Fig 5.1. Apparatus used for animal neurophysiological and behavioral 
testing. A. Hot plate for nociception. The latency to exhibit a reaction to the heated 

surface was used to evaluate analgesic efficacy. B. Elevated plus maze and C. 

Elevated zero maze. Mice were given a choice between staying within the safety of 

two walled arms (the closed arms); versus exploring two open arms to calculate 

anxiety related behavior and anxiolytic effects of drugs. D. System to evaluate 

locomotor activity. Levels of locomotion and rearing are measured and used to 

calculate hyper- or hypo- activity in experimental groups, and to detect aberrant 

exploration and habituation in a novel environment. Pictures from [300].  

 

A B

C D
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Fig. 5.1. Apparatus used for animal neurophysiological and behavioral 
testing (continued). E. Three chambered plexiglass box for social memory. For this 

test the inner doors were removed to allow the mouse to move freely. F. Wired cage 

to hold stranger mouse for the social memory test. Proximity to the cage was scored 

as social investigation behavior. G. Acoustic startle response chamber for 

assessment of prepulse inhibition effect of a drug and its antipsychotic effects. H. 

Tube used to hold mouse during test. Pictures from [300].  

 

E F
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RESULTS AND DISCUSSION 

 A variety of behavioral tests were conducted to evaluate the ability of OT and 

the small-molecules compounds to influence complex behaviors such as anxiety, 

pain threshold, social memory duration, and prepulse inhibition of the acoustic startle 

response. The tests performed were chosen as they are well-established animal 

models for OT activity. As an example, social memory has been considered 

analogous to the social deficits present in pervasive developmental disorders like 

autism, and attenuation of prepulse inhibition is a core sign of schizophrenia. 

 The first step was to assess a baseline for each experiment, followed by 

evaluation of the dose dependent effect of OT. The next step was to test the ability 

of cmpd39, the small-molecule OTR agonist validated previously, to affect complex 

behaviors and to compare its efficacy to OT’s. Mouse behavioral experiments 

require 10 to 20 mice per treatment group for proper statistical analyses. Different 

ages can be combined, under the general guidelines that 3 to 10 month old mice are 

adults and share similar behaviors. Positive findings from the first batch of mice 

require replication in a second batch of mice to ensure reproducibility of the findings 

[300].  

 

Toxicity test. Before embarking into in animal tests, toxicity of test compounds was 

determined. This information helped assess the highest possible safe doses . OT 

was reported to cause motor disturbances at higher doses [301]. OT at a 10 mg/kg 

concentration was injected i.p. to five C57BL/6J mice and observed for 1 hour after 

injection and five consecutive days for signs of distress or neurological and 
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physiological damage. Any distress or damage was apparent during the observation 

period. Cmpd39 was tested initially at 10 mg/kg and 40 mg/kg and later at 70 mg/kg. 

Two mice per dose were injected i.p. and observed for 2 hs immediately after 

injection and for the following five days for signs of distress. No signs of neurological 

damage or motor disturbances were seen during the week of observation. Only 

signs of sedation and grooming were observed during the first hours after injection, 

which correlated with acute OT effects (see next section). In fact, mice recuperated 

from the acute treatment overnight and showed normal behavior on the second day. 

Therefore, both compounds were considered safe for further studies. 

 

Self-grooming behavior test. Central OT plays a physiologically relevant role in the 

activation of grooming behavior through the selective activation of the CNS OTR 

system [124, 279]. Our previous data and literature reports showed that 

administration of ICV OT elicited OTR-mediated self-grooming of wild-type Sprague-

Dawley rats [280]. The enhanced grooming was selective to OTR as indicated by the 

results that showed that the administration of the selective oxytocin antagonist 

reduced self-grooming significantly [124, 125, 281]. 

First, the OT effect on self-grooming was tested for ICV and i.p. 

administration. Intraperitoneal administration is very easy, but we decided to test ICV 

as well because some actives would not cross the blood-brain barrier from the blood 

stream in such an effective concentration that would cause any CNS effects.  

OT-treated C57BL/6J mice showed an increase in self-grooming episodes per 5 min 

intervals in a dose dependent manner when 1 and 2 µg were administered ICV. 
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There was a significant difference between mice that were treated with OT in 

comparison with the saline group, especially between 1 and 15 min after injection 

(fig. 5.2.A). These results showed that OT had its maximal effect on the OTR in the 

CNS at around 5-15 min. Fig 5.2.B. shows the self-grooming effect elicited by OT at 

10 mg/kg when administered i.p. The maximal effect appeared between 45 and 65 

min. The administration route delayed the OT effect, but this test showed that OT 

can penetrate the BBB in an effective dose. With the results obtained from these two 

experiments, it was concluded that in order to obtain OT maximal effects to assess 

changes in behavior, the most favorable latency times would be 10-15 min for ICV 

administration and 45-60 min for the i.p. route. 

The effects of cmpd39 on self-grooming were only evaluated in the 

intraperitoneal route. The high doses of 10 and 50 mg/kg of cmpd39 were 

investigated in conjunction with toxicity assessment. Both concentrations caused 

non-stop self-grooming behavior at around 60 and 90 min for 5 min. The mice 

recuperated from the injections rapidly and there were no obvious behavioral 

changes. Given these results, we concluded that cmpd39 crossed the BBB and it 

elicited grooming behavior through the selective activation of the CNS OTR system 

(fig. 5.3.). 

The Balb/C mouse strain was used in the anxiety-related tests. The OT effect 

on self-grooming in these mice was investigated to assess accurate ICV 

administration of OT. Each mouse received 2 µg of OT in a 2 µl injection volume. 

They were placed in their home cage for continuous observation for 1 hr. None (n=5) 

showed any grooming episodes that could attributed to the effect of OT. These mice  
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Fig 5.2. OT self-grooming effect. Self-grooming behavior was tested in mice 

treated with OT by ICV or i.p administration. Positive behavior was given a value of 1 

and negative behavior a value of 0. The results are reported as self-grooming bouts 

(0-5) in a five min interval. The x axis represents the 5 min intervals tested. A. OT 

effect in ICV cannulated mice. OT at 1 μg (light blue, n=10), OT at 2 μg (dark blue, 

n=10), and saline (red, n=18) treatments are shown. Each ICV cannulated mouse 

was infused with 2 μl of solution over a 1min period. B. OT effect in i.p. injected mice 

(n=3). OT dose was 10 mg/kg and the injection volume was 1 ml/100 g body weight. 

All the results were reported as average ± S.E.M. 
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Fig 5.3. Cmpd39 self-grooming effect via intraperitoneal administration. Self-

grooming behavior was tested in mice treated with OT by i.p. administration. Self-

grooming behavior was scored every min for 10 sec. Positive behavior was given a 

value of 1 and negative behavior a value of 0. The results are reported as self-

grooming bouts (0-5) in a five min interval. The x axis represents the 5 min intervals 

tested. A. Cmpd39 effect at 10 mg/kg (n=2). B. Cmpd39 at 50 mg/kg (n=2). All the 

results were reported as average ± S.E.M. Injection volume was 1 ml/100 g body 

weight. 
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remained in a corner of their cage without moving for the entire time. We concluded 

that Balb/C is not a strain that could be used for quantification of the self-grooming 

effect caused by OT. There was no literature available for this strain that reported 

grooming behavior.  

 

Hot plate nociception (HPN) test. We assessed pain perception and analgesic 

efficacy of OT using the hot plate nociception (HPN) test [127, 130]. Male ICV 

cannulated C57BL6/J mice were tested to evaluate the latency they show to an 

aversive response to the hot plate. The responses observed included licking of 

paws, jumping, or vocalizing. A baseline was first investigated to assess the effects 

of isoflurane on latency after 15 min of administration to respond to the hot plate. 

This anesthetic was used to facilitate ICV infusion on the mice (fig. 5.4. A.). A 

comparison between treatments did not show any significant differences (p <0.05), 

validating this method of anesthesia. The next step was to investigate the optimal 

waiting interval by comparing 15, 25, 30, and 35 mins between injection and HPN 

test. The OT dose of 2 µg was chosen according to the literature to mimic the results 

reported in the past [128, 129, 282, 302]. Investigation of OT effects at 15, 25, 30, 

and 35 min did not show significant differences with the saline control; therefore we 

could not show any effects of OT in analgesia (fig. 5.4.B.). At this point, we decided 

to focus our efforts in other behavioral tests that were showing positive results and 

were more germane to complex behaviors present in some neuropsychiatric 

disorders.  
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Fig. 5.4. OT effects on latency to respond to the hot plate nociception test. 
Mice were placed on the hot plate (55ºC) and timed until they showed any sign of 

discomfort or after 40 s of being placed on it. A. Isoflurane effect on nociception. No 

isoflurane (pink) and isoflurane (orange) treatments. Means are not significantly 

different. N=8. B. Maximal effect of 2 ug of OT was investigated for various latency 

times in min: 15 (pink, n=5), 25 (orange, n=3), 30 (soft green, n=3), and 35 (green, 

n=10). A statistical comparison of OT (2 ug) vs. Saline showed no significant 

differences (p< 0.05). All results are expressed as mean ± S.E.M.   

B 

A 
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Elevated Plus Maze (EPM) test. The elevated plus maze test is a well established 

behavioral test used to assess anxiety-related behavior [109, 110, 303, 304]. It has 

been reported that OT promotes anxiolytic-like behavior in male mice in a dose 

dependent manner [108]. Our goal was to reproduce these findings so we could 

compare the anxiolytic effects of the OTR active compounds. The first step was to 

set up a baseline of unanesthetized mice in order to compare this group to historical 

data [287]. Baseline activity was first investigated using C57BL6/J ICV cannulated 

awake mice (fig. 5.5.).  

Since the C57BL6/J mice were ICV cannulated and there was a need to 

slightly to anesthetize them to administer drugs, the isoflurane affect on the mouse 

performance in EPM tests was tested. Briefly, mice were anesthetized with 

isoflurane for 2 min and were placed in the EPM after 30 min for a 5 min test. Fig. 

5.6. shows that isoflurane has no effect on the open arm time and entries 

percentages (p<0.05) indicating no anxiolytic activity.  

The mice used in the previous experiment were tested on the elevated plus 

maze 30 minutes following the end of the ICV injection (vehicle or oxytocin). Data 

from mice that did not show any increase in grooming behavior after OT ICV 

administration was discarded because OT-mediated self-grooming was used as an 

indicator of accurate central administration. Overall, there were no significant 

differences in percent open arm time or entries between the vehicle and OT groups 

(fig. 5.7.). There was a non-significant trend for higher numbers of entries in the OT 

mice (p=0.0716). A repeated measures analysis of time spent on the open and 

closed arms revealed a significant interaction between treatment and arm 
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(p=0.0389). Post-hoc tests indicated that the mice given OT spent significantly less 

time in the closed arms (211±14 sec), in comparison to the vehicle mice (251±11 

sec). Mice were allowed at least two weeks to recuperate from the stress of the test 

and to avoid anxiety decrease because of repeated exposure to the maze and 

handling. 

The Balb/C mice strain was previously shown to display increased anxiety-

like behavior compared to other strains; they spent less than 5% of the test time in 

the open arms of an elevated plus maze [287]. These findings made this strain very 

attractive to be tested with OT. Consequently, it has been reported that the Balb/C 

strain showed decreased anxiety behavior in the elevated zero maze when they 

were administered 1 µg of OT ICV [108]. Molecules that elicit anxiolytic effects would 

be easily identified using this strain in the maze test. Our efforts shifted to try to 

reproduce these findings in our laboratory using the elevated plus maze to later be 

able to test the anxiolytic effects of the validated OTR agonists and allosteric 

modulators. 

In the EPM, centrally administered OT (2 µg), did not produce a significant 

change in the percent entries to the closed arms and the percent time spent in the 

closed arms of the EPM in Balb/C male mice (p<0.05, n=10) (fig. 5.8.). All the mice, 

including the ones that received the OT treatment, stayed in the closed arms for the 

entire test. The effects reported in the literature could not be reproduced. 
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Fig 5.5. Comparison between untreated C57BL/6J mice and literature data of 
the elevated plus maze. Percent time (A) for the open arm and (B) percent entries 

of the elevated plus maze. Our data (pink). Literature data (blue). Data are mean ± 
S.E.M. and n= 20 for each group. 

 

 

 

Fig. 5.6. Isoflurane effect as an anesthetic to be used in the elevated plus maze 
with ICV cannulated C57BL/6J mice. Percent time (A) for the open arm and (B) 

percent entries of the elevated plus maze. No isoflurane (pink). Isoflurane (blue). 

Data are mean ± S.E.M. and n= 20 for each group. 
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Fig. 5.7. OT anxiolytic effects in the elevated plus maze in ICV cannulated 
mice. Anxiolytic effects were tested in mice using 1 µg of OT administered ICV. 

Percent time and percent entries for the open arms of the elevated plus maze, and 

total number of entries are shown. Treatments shown are: saline (green, n=18), OT 

(blue, n=18), and control (red, n=5). Percent open arm time = time spent in open 

arms / (time in open arms + time in closed arms) x 100. Percent open arm entries = 

entries into open arms / (entries into open arms + entries into closed arms) x 100. 

Data are mean ± S.E.M. for each group. Overall, there were no significant 

differences in percent open arm time or entries between the vehicle and OT groups. 

Post-hoc tests indicated that the mice given OT spent significantly less time in the 

closed arms (211±14 sec), in comparison to the vehicle mice (251±11 sec).  



 203 
 

  

 

 

 

 

0

20

40

60

80

100

120

Pe
rc

en
ta

ge

OTS OTS
Closed Entries Closed Time

0

20

40

60

80

100

120

Pe
rc

en
ta

ge

OTS OTS
Closed Entries Closed Time

 

 

Fig. 5.8. Anxiolytic-like effects of OT in Balb/C mouse strain in EPM. Central 

administration of OT (2 µg) did not produce a significant change in the percent 

entries to the closed arms and the percent time spent in the closed arms of the EPM 

in Balb/C male mice (p<0.05, n=10). 
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Elevated zero maze (EZM) test. The elevated zero maze (EZM) test is a well 

established behavioral test used to assess anxiety-related behavior. It is similar in 

concept to the elevated plus maze, but it presents the advantage of not having the 

central area that can cause inconsistencies in scoring. Mice were allowed at least 

two weeks to recuperate from the stress of the test and to avoid anxiety decrease 

because of repeated exposure to the maze and handling. The OT effects seen in the 

EPM were also reported for the EZM; therefore, our goal was to investigate this 

modified paradigm to use it in the identification of small molecules that produce 

anxiolytic-like effects. Two strains of mice were used: C57BL6/J and Balb/C male 

mice. These experiments were conducted on awake mice to avoid anesthetic effects 

(isoflurane). Central administration of drugs did not show any significant differences 

between OT (2 µg) and saline treatments (p< 0.05) (fig. 5.9.). Since the results 

published previously were not reproduced, we decided to stop anxiety testing and 

focus our efforts on other mouse tests expected to be sensitive to OTR agonists. 
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Fig. 5.9. Anxiolytic-like effects of OT in C57BL6/J (left) and Balb/C (right) male 
mouse strains in EZM. Central administration of OT (2 μg) did not produce a 

significant change in the percent entries and the percent time spent in the open and 

closed arms of the EZM (p<0.05). OT treatment is shown in pink and saline 

treatment in orange. N= 18 for C57BL/6J and n=10 for Balb/C strains. 
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Social memory duration test. A social memory test was designed to measure 

social approach initiated by the subject mouse toward an unfamiliar conspecific as 

compared to social approach initiated by the subject mouse toward a more familiar 

conspecific, defining preference for social novelty, as well as confirming the ability of 

the subject to distinguish between two different mice [144]. Given that impairments 

in social interaction and communication are the primary diagnostic indicators in 

ASDs, the assessment of social behavior was considered an essential component of 

our studies in mouse models [298]. Initial work with this test for social approach has 

shown that most inbred mouse strains choose to spend more time near unfamiliar 

strangers. This preference for social proximity can be observed in juvenile and adult 

mice and in males and females [305-307]. The development of social memory is 

defined as a decrease in olfactory investigation in repeated encounters with a 

conspecific [308, 309]. Our goal was to assess the effects of centrally administered 

OT to prolong social memory in male mice. The first approach was to determine the 

inter-exposure time interval that maintained a social memory of a subject repeatedly 

introduced in opposition to an unfamiliar subject in the C57BL6/J mouse strain. 

The social investigation task was conducted in the males’ home cages to 

avoid dominance behavior. Mice were allowed to move freely in the cage. The male 

subjects were habituated to the presence of a female stranger five days prior to 

testing to avoid aggressive behavior. During this habituation period, mice that 

showed aggressive or sexual behaviors were not tested further. Measures were 

taken of the amount of time spent in proximity to the ovariectomized female, as well 

as sniffing and allo-grooming behavior towards the stranger.  
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The first stage of this test consisted of introducing the male to a novel 

ovariectomized female for a 5 min exposure time to start forming a social memory. 

The second exposure interval was at 10 min and it was included to allow 

consolidation of social memory of a familiar stranger. After different inter-exposure 

intervals (30, 60, and 120 min), either the same female or another stimulus animal 

was introduced to the male for another 5 min. This stage was designed to assess 

social novelty memory as well as duration of memory regarding a familiar stranger. 

This phase of the social preference test provided information on the ability of the 

mice to distinguish between two conspecifics. The expected outcome emphasized 

the decrease in time the male would spend investigating the reintroduced female as 

opposed to the time spent investigating a novel stranger [58, 62].  

Our results showed that male mice could not distinguish between familiar and 

unfamiliar conspecifics in three different time intervals (fig. 5.10.). A proper baseline 

that showed differences between time and / or subject introduced could not be 

established; therefore, this social memory prolongation paradigm was not pursued 

further to evaluate OT effects. 

A short pilot test (n=5) was also done using ICV Balb/C male mice. This strain 

did not show any interest in investigating strangers (data not shown). In fact, these 

mice did not move at all when placed in the cage and observed for 1 hr. This 

particular strain did not seem to be a suitable strain to be used in social behavior 

paradigms. 
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Fig. 5.10. Social memory duration of male C57BL/J mice after exposure to 
different female strangers. We tested different inter-exposure intervals to calculate 

the amount of time a male mouse would “remember” a familiar subject (30, 60, and 

120 min). Males were introduced to familiar (same = red, n=10) or unfamiliar 

(different = blue, n=10) females for 5 min intervals to allow social investigation. The 

relative duration of investigation between the first and second exposures did not any 

significant changes at 30, 60, or 120 min and between same and different female 

groups. 
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Acoustic Startle Response (ASR) and prepulse inhibition (PPI) test. Prepulse 

inhibition of the startle reflex is an operational measure of sensorimotor gating and 

refers to the normal suppression of startle the startle reflex when the intense startling 

stimulus (“pulse”) is immediately preceded by a weaker stimulus (“prepulse”). The 

PPI paradigm has been widely applied in studies of information processing in normal 

animals and humans [139]. The acoustic startle measure was based on the reflexive 

whole-body flinch, or startle response, following exposure to a sudden noise. 

Decreased PPI has been reported for patients with schizophrenia and autism 

spectrum disorders [185, 192, 310]. In rats, PPI is decreased in a manner 

homologous to that seen in schizophrenia by administration of certain 

psychotomimetic drugs, including the direct and indirect dopamine agonists, 

apomorphine and amphetamine, and the non-competitive NMDA antagonists, PCP 

and dizocilpine (MK-801) [311-314]. Antagonism of psychotomimetic-induced 

disruption of PPI has been proposed as a strong predictor of antipsychotic activity 

[315]. It has been reported that OT plays a role in the modulation of regulation of PPI 

in rats, and that it may act as a novel endogenous antipsychotic [139]. Our goal was 

to reproduce those findings in a mouse PPI behavioral model and to later test OTR 

agonists to assess their antipsychotic-like activity in this paradigm. 

The first step was to optimize the psychotomimetic drug (MK-801) dosage to 

obtain the most significant differences when compared to saline treated animals. Fig. 

5.11. shows a dose-dependent effect of MK-801 in the startle amplitude and the 

percent prepulse inhibition when administered subcutaneously. MK-801 at 1 mg/kg 

showed a main treatment effect on startle response [F (2,322) = 58.95, p<0.0001] 
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and a significant overall interaction effect [F (12,322) = 1.90, p<0.0001]. MK-801 at 1 

mg/kg showed a main treatment effect on prepulse inhibition [F (2,225) = 28.94, 

p<0.0001]. The MK-801 dose chosen to evaluate OT and OTR agonists effect on 

PPI disruption was 1 mg/kg since this dose showed the most significant effect 

through out all the prepulses (p<0.01). 

OT effects on startle amplitude and PPI disruption were investigated next on 

ICV cannulated mice. A dose response curve was tested (1 and 3 µg of OT given 

centrally) followed by a subcutaneous MK-801 (1 mg/kg) injection. The data shown 

on figure 5.12. show no apparent effects of s.c. MK-801 on the cannulated mice. 

This data did not reproduce the results obtained previously. We argued that the 

cannula implanted in the mice may have caused some negative effect on this test or 

on the normal functioning of the mice. 

Our efforts then shifted to evaluate the effects of OT administered 

systemically (intraperitoneal). We investigated the dose-dependent response of OT 

(1, 2, and 3 mg/kg) on startle amplitude and PPI, specifically, the ability of OT to 

rescue the disruption of PPI caused by MK-801 (1 mg/kg) in mice.  

Repeated measures ANOVA and multiple group comparisons using the 

Bonferroni post-hoc test were calculated to identify significant differences among 

treatment and prepulse groups. Treatment with OT showed a main treatment effect 

on startle response [F (5, 1393) = 69.42, p<0.0001] and a significant overall 

interaction effect [F (30, 1393) = 2.322, p<0.0001]. Fig. 5.13. shows that OT (3 

mg/kg) significantly blocked MK-801 effect on startle response at all the prepulse 

levels by reducing the increased startle response caused by administration of MK- 
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Fig. 5.11. Dose-dependent effect of subcutaneous MK-801 on acoustic 
startle response (top) and prepulse inhibition (bottom) in male C57BL/6J 
mice. The acoustic startle measure was based on the reflexive whole-body 

flinch, or startle response, following exposure to a sudden noise. Prepulse 

inhibition of the startle reflex refers to the normal suppression of startle the startle 

reflex when the pulse is immediately preceded by a prepulse. Saline (green, 

n=25), MK-801 at 0.5 mg/kg (blue, n=9), and MK-801 at 1 mg/kg (red, n=14). All 

treatments were administered 5 min before start of test. The results were 

expressed as mean ± S.E.M. for all prepulses. Significantly different to saline 

group: # (p<0.001), *(p<0.01), and & (p<0.05). 
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Fig. 5.12. Dose-dependent effect of ICV OT on acoustic startle response (top) 
and PPI (bottom) in mice treated with MK-801 (1 mg/kg) subcutaneously. The 

acoustic startle measure was based on the reflexive whole-body flinch following 

exposure to a sudden noise. Prepulse inhibition of the startle reflex is the 

suppression of this reflex when the pulse is immediately preceded by a prepulse. OT 

(ICV) and MK-801 (s.c.) were administered 50 and 5 min before test, respectively. 
Treatments: saline/saline (red, n= 11), saline/MK (orange, n= 11), OT 1 µg/ MK 

(blue, n= 7), and OT 3 µg/ MK (green, n= 8). MK-801 did not produce a significant 

change in startle amplitude nor in disruption of PPI.  
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801 at 1 mg/kg. OT by itself did not modify the baseline startle response per 

comparison with the saline/saline control group (p>0.05). 

Treatment with OT showed a main treatment effect on prepulse inhibition [F 

(5, 985) = 33.22, p<0.0001]. OT significantly blocked the MK-801-elicited disruption 

of PPI at 86 and 90 dB prepulse level at 2 mg/kg and at 90 dB at 3 mg/kg (see fig 

5.14.). This data suggested that OT could modulate glutaminergic modulation of PPI. 

The control group that was administered OT at 1 mg/kg with saline (OT/S group) did 

not show any significant differences with the baseline group (saline/saline, p>0.05).  

Restoration of MK-801 disruption of PPI has been strongly associated with 

antipsychotic drugs, and it is considered a predictive marker for potential 

antipsychotic activity. The ability to restore NMDA antagonist-disrupted PPI is more 

selectively associated with members of the “atypical” antipsychotic family [142, 316-

318]. Based upon its ability to restore MK-801 reduced PPI, oxytocin demonstrates a 

potent “atypical”-like antipsychotic profile [139]. In order to expand the therapeutic 

profile of OT, psychotomimetic-induced PPI disruption needed to be investigated 

with the dopamine agonist amphetamine. Administration of amphetamine at different 

concentrations (9-15 mg/kg) did not result in disruption of PPI or even startle 

amplitude increase as reported in the literature when compared to saline control 

groups (data not shown) [139, 206]. Amphetamine is one of the classical 

psychotomimetic drugs of choice to valuate potential antipsychotic value of new 

drugs; therefore, our data did not seem correct. Further testing of amphetamine 

effects need to be done with newly-purchased drug to avoid any kind of degradation 

(our batch dated from 2001). 
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Since this study employed systemic injections of oxytocin, it is not possible to 

conclude whether the observed effects were mediated by central and/or peripheral 

sites. The highly selective nature of the effects produced by oxytocin in this study 

argues against a peripheral action, since startle amplitude and baseline PPI were 

not significantly affected. In fact, the only significant actions produced by oxytocin in 

this study amounted to a normalization of a centrally regulated process (PPI), which 

had been disrupted by centrally acting psychotomimetics. Since a small proportion of 

oxytocin, administered systemically, crosses the blood-brain barrier, a central site of 

action for the observed effects on PPI is quite feasible [139]. Other studies have also 

reported that systemic injections of oxytocin produce significant effects on centrally 

mediated behaviors [319-321] and evidence supports a central site of action for 

these effects. It was reported that nanogram-range doses of oxytocin administered 

intracerebroventricularly produced locomotor effects similar to milligram-range doses 

of the same peptide administered systemically [320].  

Given the ability of OT to rescue MK-801 psychotomimetic effects in PPI, the 

next logical step was to investigate the effects of cmpd39, as there were no reports 

on mouse tests for it. Our pharmacological work demonstrated that cmpd39 

selectively activated the OTR system in a similarly to the natural ligand OT. 

Therefore it was anticipated that this compound would elicit similar effects on PPI. 

This battery of tests would also be used for in the future to assess efficacy of 

selective activators of the OTR identified from high throughput screening. As 

explained previously, OTR agonists and allosteric modulators must cross the BBB to  
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Fig. 5.13. Dose-dependent effects of i.p. OT on acoustic startle response in 
mice treated with s.c. injections of MK-801. The acoustic startle measure was 

based on the reflexive whole-body flinch following exposure to a sudden noise. 

Prepulse inhibition of the startle reflex is the suppression of the startle reflex when 

the pulse is immediately preceded by a prepulse. First injection was OT (1, 2, and 3 

mg/kg) or saline (i.p.) 50 min before test. Second injection was saline or MK-801 (1 

mg/kg, s.c.) 5 min before test. Treatment groups were: saline/saline (pink, n=47), 

OT/saline (red, 1 mg/kg, n= 12), saline/ MK-801 (green, 1 mg/kg, n= 75), OT/ MK-

801 (light blue, 1 mg/kg, n= 38), OT/MK-801 (blue, 2 mg/kg, n= 14), and OT/MK-801 

(dark blue, 3 mg/kg, n= 19). # No significant differences between the saline/saline 

and the OT 3 mg/kg /MK-801 groups (p>0.05). * Significant differences between the 

saline/saline and saline/MK-801 groups (p<0.001). The control groups saline/saline 

and OT 1 mg/kg/saline did not show significant differences. The data was analyzed 

using repeated measures ANOVA and Bonferroni post-hoc test. 
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Fig. 5.14. Dose-dependent effects of i.p. OT on prepulse inhibition in mice 
treated with s.c. injections of MK-801. The acoustic startle measure was based on 

the reflexive whole-body flinch following exposure to a sudden noise. Prepulse 

inhibition of the startle reflex is the suppression of the startle reflex when the pulse is 

immediately preceded by a prepulse. First injection was OT (1, 2, and 3 mg/kg) or 

saline (i.p.) 50 min before test. Second injection was saline or MK-801 (1 mg/kg, 

s.c.) 5 min before test. Treatment groups were: saline/saline (pink, n=47), OT/saline 

(red, 1 mg/kg, n= 12), saline/ MK-801 (green, 1 mg/kg, n= 75), OT/ MK-801 (light 

blue, 1 mg/kg, n= 38), OT/MK-801 (blue, 2 mg/kg, n= 14), and OT/MK-801 (dark 

blue, 3 mg/kg, n= 19). # No significant differences between the saline/saline and the 

OT/MK groups (p>0.05). * Significant differences between the saline/saline and 

saline/MK-801 groups (p<0.001). The control groups saline/saline and OT 1 

mg/kg/saline did not show significant differences. The prepulse inhibition was 

calculated as 100 − [(response amplitude for prepulse stimulus and startle stimulus 

together / response amplitude for startle stimulus alone) × 100]). The data was 

analyzed using repeated measures ANOVA and Bonferroni post-hoc test. 
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be successful. We anticipated that small molecules would cross the BBB more 

efficiently that OT as this peptide is larger in size.  

 We studied the effects of cmpd39 (10-100 mg/kg, i.p. 50 min prior to test) on 

reversal of PPI disruption produced by MK-801 (1 mg/kg, s.c., 5 min prior to test). 

Cmpd39 significantly attenuated MK-801 induced deficits in PPI at 75 mg/kg 

(p<0.0001) (fig. 5.15.). For comparison, treatment with OT showed a main treatment 

effect on prepulse inhibition [F (8, 835) = 24.96, p<0.0001]. In addition, cmpd39 

showed startle amplitude values comparable to the saline control groups (fig. 5.16.). 

Treatment with cmpd39 showed a main treatment effect on startle response [F (8, 

1204) = 56.12, p<0.0001] and a significant overall interaction effect [F (48, 1204) = 

1.828, p= 0.0006]. The administration of cmpd39 with a subsequent saline injection 

(cmpd39 control group) resulted in slightly lower startle amplitude values and a slight 

increase in PPI inhibition than saline control. This effect is it suggestive that cmpd 39 

has antipsychotic properties. Lower doses of cmpd39 (10, 30, and 50 mg/kg) 

resulted in no significant effect on either startle amplitude or PPI. Notably, the 

highest dose administered (100 mg/kg) caused the mice to be very lethargic (maybe 

cataleptic?). Further observation (1 day) showed that this dose was not lethal. We 

hypothesize that the lethargy observed in these mice could be comparable to high 

doses of the commonly used, antipsychotic drug, haloperidol [322, 323].  

In summary, our investigation of cmpd39 revealed a dose dependent profile 

of therapeutically relevant effects of antipsychotic-like activity in the PPI paradigm. It 

could be suggested that cmpd39 acts as an atypical antipsychotic as the 

psychotomimetic MK-801 induced deregulated glutaminergic neurotransmission 
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[189, 206]. Future investigation should include testing cmpd39 in PPI experiments by 

inducing psychosis with amphetamine, which has been historically used to identify 

typical antipsychotic drugs (see future plans). 

 

Open field locomotion test. Motor activity underlies almost every mouse 

behavioral paradigm. Simple, automated tests of spontaneous locomotion are 

routinely performed. Photocell beam measurements of open field locomotion, in 

standard photocell-equipped automated open field equipment, can evaluate total 

amount of movement, rate of movement, and type of spontaneous activity. The open 

field test is also one of the oldest, most extensively used, and simplest measures of 

mouse and rat emotional behavior. Over 20 additional behavioral measures have 

been proposed as indices of emotionality/anxiety in the open field. Of these 

additional measures, rearing behavior, which decreases in an anxiogenic 

environment, and thigmotaxis, the proportion of time the animal remains close to the 

walls of the open field, are the additional behaviors most commonly assessed. High 

levels of ambulation and rearing are positively correlated with each other. Increasing 

the stressful properties of the open field, by increasing illumination level or 

background noise, generally results in decreased activity. Environmental conditions 

and prior treatments, such as handling, stress, surgery, and drug treatments, will 

affect performance in open field testing. In general, the C57 inbred strains of mice, 

including C57BL/6, consistently show high levels of open field locomotion, and low 

levels of anxiety-related measures in the open field. Strains typically exhibiting low  
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Fig. 5.15. Dose-dependent effects of i.p. cmpd39 on prepulse inhibition in mice 
treated with s.c. injections of MK-801. The acoustic startle measure was based on 

the reflexive whole-body flinch following exposure to a sudden noise. Prepulse 

inhibition of the startle reflex is the suppression of the startle reflex when the pulse is 

immediately preceded by a prepulse. First injection was cmpd39 (10, 30, 50, 75, or 

100 mg/kg) or saline (i.p.) 50 min before test. Second injection was saline or MK-801 

(1 mg/kg, s.c.) 5 min before test. Treatment groups were: saline/saline (pink, n=47), 

cmpd39/saline (red, 75 mg/kg, n= 14), saline/ MK-801 (green, 1 mg/kg, n= 73), 

cmpd39/ MK-801 (light blue, 10 mg/kg, n= 10), cmpd39/MK-801 (blue, 30 mg/kg, n= 

10), cmpd39/MK-801 (darker blue, 50 mg/kg, n= 11), and cmpd39/MK-801 (darkest 

blue, 75 mg/kg, n= 14). Data not shown for cmpd39 at 100 mg/kg, see text. # No 

significant differences between the saline/saline and the cmpd39/MK groups 

(p>0.05). * Significant differences between the saline/saline and saline/MK-801 

groups (p<0.001). The control groups saline/saline and cmpd39 75 mg/kg/saline did 

not show significant differences. The prepulse inhibition was calculated as 

100 − [(response amplitude for prepulse stimulus and startle stimulus together / 

response amplitude for startle stimulus alone) × 100]). The data was analyzed using 

repeated measures ANOVA and Bonferroni post-hoc test. 
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Fig. 5.16. Dose-dependent effects of i.p. cmpd39 on acoustic startle response 
in mice treated with s.c. injections of MK-801. The acoustic startle measure was 

based on the reflexive whole-body flinch following exposure to a sudden noise. 

Prepulse inhibition of the startle reflex is the suppression of the startle reflex when 

the pulse is immediately preceded by a prepulse. First injection was cmpd39 (10, 30, 

50, or 75 mg/kg) or saline (i.p.) 50 min before test. Second injection was saline or 

MK-801 (1 mg/kg, s.c.) 5 min before test. Treatment groups were: saline/saline 

(pink, n=47), cmpd39/saline (red, 75 mg/kg, n= 8), saline/ MK-801 (green, 1 mg/kg, 

n= 75), cmpd39/ MK-801 (light blue, 10 mg/kg, n= 10), cmpd39/MK-801 (blue, 30 

mg/kg, n= 10), cmpd39/MK-801 (darker blue, 50 mg/kg, n= 14) and cmpd39 /MK-

801 (darkest blue, 75 mg/kg, n= 13). # No significant differences between the 

saline/saline and the cmpd39/MK groups (p>0.05). * Significant differences between 

the saline/saline and saline/MK-801 groups (p<0.001). The control groups 

saline/saline and cmpd39 75 mg/kg/saline did not show significant differences. The 

data was analyzed using repeated measures ANOVA and Bonferroni post-hoc test. 
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locomotor activity and high levels of emotional reactivity include DBA/1, BALB/c and 

A/J [288]. 

 Immediately following the elevated plus maze test, mice were given a 15-min 

test in a novel open field. Measures were taken of ambulation (distance traveled), 

fine movements (the repeated breaking of the same set of photo-beams), rearing 

movements, and time spent in the center region, an index of anxiety-like behavior 

(fig. 5.17.). Untreated and non-cannulated male C57BL/6J mice were tested to 

assess any differences caused by the ICV cannulation. Treatment with OT led to 

higher locomotor activity [treatment main effect on distance traveled, F (1, 14) =5.36, 

p=0.0363]. Significant differences were not observed for the other measures. 

Male C57BL/6J non-cannulated mice were tested to compare saline, OT (1 

mg/kg, i.p.), and MK-801 (1 mg/kg, s.c.) for future reference as control groups 

(single injection test). Mice first underwent the acoustic startle test before being 

immediately placed into the open field boxes to assess activity for a period of 3 h. In 

all, the mice were introduced into the activity chambers 75 min after the first injection 

for a total time of 3 h. Treatment with OT and MK-801 showed main effect 

differences and an overall interaction effect in every parameter measured (see fig. 

5.18.). Higher levels of activity in mice treated with MK-801 were observed. 

Specifically, mice that received a MK-801 treatment showed increased horizontal 

activity, fine movements, distance traveled and time spent in center region, and 

rearing movements (vertical activity) after 130 min. These results show that the 

maximal efficacy of i.p. administered drugs was obtained during this time frame. 

Interestingly, the rearing movements were decreased compared to the saline group 
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from the beginning of the test for 40 min. Treatment of OT (1 mg/kg) resulted in a 

notable decrease of total activity as shown by decreased horizontal activity, total 

distance traveled, rearing and fine movements (fig. 5.18.). Time spent in the center 

region, which is used as an index of anxiety-like behavior was decreased for the first 

30 min. The statistical results are shown in table 5.1. Together, these data are 

consistent with an anxiolytic-like effect of OT on treated mice. 

Further analysis of the data obtained for this single injection test showed that 

the main treatment differences were observed in the 75-105 min and 135-255 min 

intervals. The most significant differences in the initial interval (75-105 min) were 

present in the OT group. This could suggest OT’s maximal efficacy window. On the 

contrary, the differences found in the final time frame (135-255 min) could represent 

the degradation of OT and the persistence of the MK-801. Fig. 5.19. represents the 

overall differences observed in those specific time intervals and their statistical 

significance.  

We then investigated the effect of OT dose on open field locomotion in mice 

treated with MK-801 (1 mg/kg). Non-cannulated C57BL/6J mice tested in the 

acoustic startle paradigm were immediately placed in the activity chamber to assess 

differences among treatments. In particular, we anticipated that OT could rescue the 

MK-801 effect. The effects observed corresponded to treatment effects in the 75 to 

190 min interval (2 hs test). Treatment with several OT concentrations showed main 

effect differences and an overall interaction effect in every parameter measured (see 

table 5.2.). In the horizontal and total distance traveled (fig. 5.20.), MK-801 showed a 

marked difference (p<0.001) compared to the saline/saline group, especially after 
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Fig. 5.17. OT effect in the open field test for ICV cannulated male mice (15 
min). Untreated and non-cannulated male C57BL/6J mice were tested to assess 

any differences caused by the ICV cannulation. Vehicle group (n= 8), and oxytocin 

group (n=8) received saline or OT (1 µg) ICV injection, respectively. Control group 

(n=5) was non-injected non-cannulated male mice. A. Distance traveled and B. fine 

movements showed significant differences (p<0.05). C. Rearing movements and D. 

time spent in the center region did not show significant differences. 

A B 
5 10 15

0

300

600

900

1200

Time (min)
Fi

ne
 M

ov
em

en
ts

C D 



 224 
 

0

20

40

60

80

0

500

1000

1500

2000

2500

3000

0

500

1000

1500

2000

0

200

400

600

800

1000

0

50

100

150

0

1000

2000

3000

D
is

ta
nc

e 
(c

m
)

75     95      115     135     155    175     195     215     235    255 75     95      115     135     155    175     195     215     235    255

75     95      115     135     155    175     195     215     235    255 75     95      115     135     155    175     195     215     235    255

75     95      115     135     155    175     195     215     235    25575     95      115     135     155    175     195     215     235    255

0

20

40

60

80

0

500

1000

1500

2000

2500

3000

0

500

1000

1500

2000

0

200

400

600

800

1000

0

50

100

150

0

1000

2000

3000

D
is

ta
nc

e 
(c

m
)

75     95      115     135     155    175     195     215     235    255 75     95      115     135     155    175     195     215     235    255

75     95      115     135     155    175     195     215     235    255 75     95      115     135     155    175     195     215     235    255

75     95      115     135     155    175     195     215     235    25575     95      115     135     155    175     195     215     235    255

 

Fig 5.18. OT and MK-801 intraperitoneal effect in a 3 hs open field test for non-
cannulated male mice. Male C57BL/6J non-cannulated mice were tested to 

compare saline (red, n= 10), OT (1 mg/kg, green, n=10), and MK-801 (1 mg/kg, 

blue, n=10) for future reference as control groups (single injection test). Y-axis on 

the right represents distance (cm). X-axis represents time (min). A. Distance traveled 

horizontally. C. Total distance traveled. E. Distance traveled in center region. B. 

Upright rearing movements, Y-axis represents rear movements. D. Repetitive fine 

movements, Y-axis represent repeated breaking of the same set of photobeams). F. 

Time spent in center region (s). 

A B 

C D 

E F 
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Parameter 

 

Effect 

 

F value (df1,df2) 

 

p value 

main treatment  F (2, 1332) = 1080 <0.0001HACT 

overall interaction  F (70, 1332) = 8,243  <0.0001

main treatment  F (2, 972) = 532.5  <0.0001TOTDIST 

overall interaction  F (70, 972) = 7.894  <0.0001

main treatment  F (70, 720) = 758.2 <0.0001FINE MOVEMENTS 

overall interaction  F (70, 720) = 2.809 <0.0001

main treatment  F (2, 1332) = 378.8 <0.0001CTRDIST 

overall interaction --- --- 

main treatment F (2, 1332) = 136.2 <0.0001CTRTIME 

overall interaction --- --- 

main treatment F (2, 1332) = 58.68 <0.0001REAR MOVEMENTS 

overall interaction F (70, 1332) = 6.131 <0.0001

 

Table 5.1. Statistical data obtained for OT, saline, and MK-801 intraperitoneal 
effect in a 3 hs open field test for non-cannulated male mice. Male C57BL/6J 

non-cannulated mice were tested to compare saline, OT, and MK-801 for future 

reference as control groups (single injection test). HACT: Horizontal distance 

traveled. TOTDIST: Total distance traveled. FINE MOVEMENTS: Repetitive fine 

movements. CTRDIST: Distance traveled in the center region. CTRTIME: Time 

spent in the center region. REAR MOVEMENTS: Upright rearing movements. Df: 

degrees of freedom. 
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  Fig 5.19. OT and MK-801 intraperitoneal effect in an open field test: 75-105 
and 135-255 min intervals. The values for each 5 min interval had been added to 

provide a better understanding of the drug effects in each time period. Saline (red, 

n= 60), OT (1 mg/kg, green, n=60), and MK-801 (1 mg/kg, blue, n=120) control 

groups. A, C, and E. represent the data for the 75-105 min interval. A and B. Total 

(TOT DIST), horizontal (HACT), and center (CTRDIST) distances traveled. C and D. 

Rearing movements (y-axis= rear #) and time spent in center region (y-axis= time in 

s). E and F. Repetitive fine movements. Data are expressed as mean ± S.E.M. * 

Significant differences between groups (p<0.001). The data was analyzed using 

repeated measures ANOVA and Bonferroni post-hoc test. 
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Parameter 

 

Effect 

 

F value (df1,df2) 

 

p value 

main treatment  F (4, 1152) = 237.3 <0.0001HACT 

overall interaction  F (92, 1152) = 6.051  <0.0001

main treatment  F (4, 1152) = 66.61 <0.0001TOTDIST 

overall interaction  F (92, 1152) = 8.129 <0.0001

main treatment  F (4, 1152) = 273.6 <0.0001FINE MOVEMENTS 

overall interaction  F (92, 1152) = 7.760 <0.0001

main treatment  F (4, 1152) = 71.97 <0.0001CTRDIST 

overall interaction F (92, 1152) = 2.468 --- 

main treatment F (4, 1152) = 168.7 <0.0001CTRTIME 

overall interaction --- --- 

main treatment F (4, 1152) = 23.43 <0.0001REAR MOVEMENTS 

overall interaction --- <0.0001

 
Table 5.2. Statistical data obtained for OT dose dependent effect in the open 
field locomotion test (2 h) for non-cannulated male mice. Male C57BL/6J non-

cannulated mice were tested for effects of MK-801 in locomotion and the properties 

of OT to block these effects. Mice were investigated immediately after finishing ASR 

test. Male C57BL/6J non-cannulated mice were tested. HACT: Horizontal distance 

traveled. TOTDIST: Total distance traveled. FINE MOVEMENTS: Repetitive fine 

movements. CTRDIST: Distance traveled in the center region. CTRTIME: Time 

spent in the center region. REAR MOVEMENTS: Upright rearing movements. Df: 

degrees of freedom. 
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Fig. 5.20. OT dose dependent effect in the horizontal (top) and total (bottom) 
distance traveled for the open field locomotion test (2 hs). Male C57BL/6J non-

cannulated mice were tested for effects of MK-801 in locomotion and the properties 

of OT to block these effects. Mice were investigated immediately after finishing ASR 

test. OT and MK-801 were administered i.p. 50 min and s.c. 5 min before ASR test, 

respectively. Saline/ saline (red, n= 14), OT/saline (1 mg/kg, pink, n=7), saline/MK-

801 (1 mg/kg, blue, n=12), OT/MK-801 (2 mg/kg, light green, n=10), and OT/MK-801 

(3 mg/kg, dark green, n=10). Data are expressed as mean ± S.E.M. 
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45 min of starting this test. This can be attributed at the long lasting effect of this 

psychotomimetic drug, and it can be also concluded that the MK-801 effect lasts for 

more than 3 hs. OT did not elicit any effects by itself. OT did not attenuate the effect 

of preadministered MK-801 at any dose tested. 

Mice that were injected with S/MK-801 spent more time in this region in the 

80 to 170 min interval (see fig. 5.21., top). This effect was certainly not caused by 

anxiolytic-type effects as the total distance traveled in this interval is lower; most 

likely the mice could not move properly as there is an observable motor dysfunction 

elicited by the MK-801. This same effect was observed with the OT/MK-801 

treatment which suggested that OT did not attenuate the MK-801 effect. OT alone 

did not show any significant effects by itself. 

 The saline/MK-801 and the OT/saline groups did not show any differences in 

distance traveled in the center region (p>0.05) when compared with the saline/saline 

group (see fig. 5.21., bottom). It was of interest to note that both OT/MK-801 doses 

were significantly different than the saline/saline control for the last 40 min of the 

test. This result suggests an additive effect of MK-801 combined with OT. 

The S/MK-801 group showed an increase in repetitive fine movements 

(p<0.001) for the last 90 min of the test when compared to the saline/saline group 

(see fig. 5.22., top), and OT did not overcome this effect. OT itself did not affect fine 

movements when compared to the saline/saline control group (p>0.05). Finally, none 

of the groups presented any differences in upright rearing movements (p>0.05). The 

statistical parameters are shown in table 5.2. 
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Fig. 5.21. OT dose dependent effect in time spent (top) and distance traveled 
(bottom) in the center region for the open field locomotion test (2 hs). Male 

C57BL/6J non-cannulated mice were tested for effects of MK-801 in locomotion and 

the properties of OT to block these effects. Mice were investigated immediately after 

finishing ASR test. OT and MK-801 were administered i.p. 50 min and s.c. 5 min 

before ASR test, respectively. Saline/ saline (red, n= 14), OT/saline (1 mg/kg, pink, 

n=7), saline/MK-801 (1 mg/kg, blue, n=12), OT/MK-801 (2 mg/kg, light green, n=10), 

and OT/MK-801 (3 mg/kg, dark green, n=10). Data are expressed as mean ± S.E.M. 
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Fig 5.22. OT dose dependent effect in repetitive fine movements (top) and 
upright rearing movements (bottom) of the open field locomotion test (2 h). 
Male C57BL/6J non-cannulated mice were tested for effects of MK-801 in 

locomotion and the properties of OT to block these effects. Mice were investigated 

immediately after finishing ASR test. OT and MK-801 were administered i.p. 50 min 

and s.c. 5 min before ASR test, respectively. Saline/ saline (red, n= 14), OT/saline (1 

mg/kg, pink, n=7), saline/MK-801 (1 mg/kg, blue, n=12), OT/MK-801 (2 mg/kg, light 

green, n=10), and OT/MK-801 (3 mg/kg, dark green, n=10). Data are expressed as 

mean ± S.E.M. 
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This open field activity test did not show any dose dependent OT effects to 

mitigate the MK-801 properties, at least during the time frame investigated. This 

could be due to the fact that administered OT could be degraded before the mice 

entered the open field locomotion test (see future plans). 

Our focus then shifted to the evaluation of the effects elicited by cmpd39 in 

the open field locomotion test. We supposed that the synthetic compound may enjoy 

a longer half-life in vivo. Mice that underwent the acoustic startle response test were 

immediately placed in activity chambers to evaluate drug effects for 2 hs. The effects 

of cmpd39 were tested at 50 and 75 mg/kg (i.p.). Subjects were placed in the 

chamber exactly 75 min after administration of the first drug (saline or cmpd39) and 

their movements were recorder for 120 min in intervals of 5 min each. 

Compound 39 affected overall performance of the mice in the open field test, 

mainly at 75 mg/kg. Treatment with several cmpd39 concentrations showed main 

effect differences and an overall interaction effect in every parameter measured (see 

fig. 5.23., 5.24., and 5.25.). The group that received the saline/MK-801 treatment 

showed differences in the distance traveled horizontally and in the center region. 

This group also spent more time in the center region and showed an increase in fine 

repetitive movements, replicating the results obtained in the single injection test 

explained above. Cmpd39 at 75 mg/kg seemed to have some effect on distance 

travelled horizontally with defined effects at different time frames; less investigation 

was observed at the beginning of the test and an increase later on when compared 

to the saline/saline control group. Similar time dependent effects were observed for 

this group in the fine and upright rearing movements. The control group that 
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received cmpd39/ saline as a treatment did not show important differences with the 

saline/saline control group; therefore, cmpd39 did not elicit any effect by itself. The 

statistical parameters are shown in table 5.3. 

In order to better understand the effects of cmpd39 in the open field 

locomotion test and since time-dependent effects were seen on the different 

treatment groups; the results when broken down into two time frames: 75-110 and 

115-145 min after first injection. Treatment with cmpd39 concentrations showed 

main effect differences in every parameter measured for both intervals investigated 

(see table 5.4.). 

In the earliest interval, cmpd39 showed lower horizontal, total, and center 

region distances traveled (fig. 5.26. A, C, and E) and upright rearing movements ( 

fig. 5.27.C) compared to the saline/saline control, while it did not show any changes 

in the time spent in the center region (fig. 5.27. E). Regarding fine movements, 

cmpd39 seemed to have overcome the effects of MK-801 (fig. 5.27.A). At the latest 

time point, mice treated with cmpd39 exhibited appreciable differences compared 

with the saline/MK-801 group. Treatment with S/MK or cmpd39/MK showed 

significant differences with the saline/saline group (p<0.001) as well (fig. 5.26 and 

5.27). Overall, the results demonstrated that cmpd39 attenuated MK-801 induced 

deficits in PPI at 75 mg/kg.  

Our investigation of OT and cmpd39 revealed a profile of therapeutically 

relevant effects of antipsychotic-like activity in the PPI paradigm. These results 

provide new insights into the role of OTR as a site of action for OT effects on CNS 

function, and the significance of these findings to future development of OTR 



 234 
 

agonists as neuropsychiatric therapeutics [206]. Our results support the use of 

cmpd39 as a probe to discern the intricacy of the OTR system and its involvement in 

complex behaviors and neuropsychiatric diseases. 
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Fig. 5.23. Cmpd39 dose dependent effect in the horizontal (top) and total 
(bottom) distance traveled for the open field locomotion test (2 h). Male 

C57BL/6J non-cannulated mice were tested for effects of MK-801 in locomotion and 

the properties of OT to block these effects. Mice were investigated immediately after 

finishing ASR test. Cmpd39 and MK-801 were administered i.p. 50 min and s.c. 5 

min before ASR test, respectively. Saline/ saline (red, n= 14), cmpd39 /saline (75 

mg/kg, pink, n=14), saline/MK-801 (1 mg/kg, blue, n=12), cmpd39/MK-801 (50 

mg/kg, light green, n=10), and cmpd39/MK-801 (75 mg/kg, dark green, n=10). Data 

are expressed as mean ± S.E.M. 
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Fig. 5.24. Cmpd39 dose dependent effect in time spent (top) and distance 
traveled (bottom) in the center region for the open field locomotion test (2 h). 
Male C57BL/6J non-cannulated mice were tested for effects of MK-801 in 

locomotion and the properties of OT to block these effects. Mice were investigated 

immediately after finishing ASR test. OT and MK-801 were administered i.p. 50 min 

and s.c. 5 min before ASR test, respectively. Saline/ saline (red, n= 14), cmpd39 

/saline (75 mg/kg, pink, n=14), saline/MK-801 (1 mg/kg, blue, n=12), cmpd39/MK-

801 (50 mg/kg, light green, n=10), and cmpd39/MK-801 (75 mg/kg, dark green, 

n=10). Data are expressed as mean ± S.E.M.
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Fig. 5.25. Cmpd39 dose dependent effect in repetitive fine movements (top) 
and upright rearing movements (bottom) of the open field locomotion test (2 
h). Male C57BL/6J non-cannulated mice were tested for effects of MK-801 in 

locomotion and the properties of OT to block these effects. Mice were investigated 

immediately after finishing ASR test. OT and MK-801 were administered i.p. 50 min 

and s.c. 5 min before ASR test, respectively. Saline/ saline (red, n= 14), 

cmpd39/saline (75 mg/kg, pink, n=14), saline/MK-801 (1 mg/kg, blue, n=12), 

cmpd39/MK-801 (50 mg/kg, light green, n=10), and cmpd39/MK-801 (75 mg/kg, dark 

green, n=10). Data are expressed as mean ± S.E.M. 



 238 
 

 

Parameter 

 

Effect 

 

F value (df1,df2) 

 

p value 

main treatment  F (4, 1320) = 209.2 <0.0001HACT 

overall interaction  F (92, 1320) = 4.378 <0.0001

main treatment  F (4, 1152) = 66.61 <0.0001TOTDIST 

overall interaction  F (92, 1152) = 8.129 <0.0001

main treatment  F(4, 1152) = 273.6 <0.0001FINE MOVEMENTS 

overall interaction  F (92, 1152) = 3.652 <0.0001

main treatment  F (4, 1320) = 63.69 <0.0001CTRDIST 

overall interaction F (92, 1320) = 1.929 --- 

main treatment F (4, 1320) = 126.5 <0.0001CTRTIME 

overall interaction --- --- 

main treatment F (4, 1320) = 35.17 <0.0001REAR MOVEMENTS 

overall interaction F (92, 1320) = 1.275 <0.0001

 
Table 5.3. Statistical data obtained for cmpd39 dose dependent effect in the 
open field locomotion test (2 h) for non-cannulated male mice. Male C57BL/6J 

non-cannulated mice were tested for effects of MK-801 in locomotion and the 

properties of cmpd39 to block these effects. Mice were investigated immediately 

after finishing ASR test. Male C57BL/6J non-cannulated mice were tested. HACT: 

Horizontal distance traveled. TOTDIST: Total distance traveled. FINE 

MOVEMENTS: Repetitive fine movements. CTRDIST: Distance traveled in the 

center region. CTRTIME: Time spent in the center region. REAR MOVEMENTS: 

Upright rearing movements. Df: degrees of freedom. 
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Fig. 5.26. Cmpd39 and MK-801 effect in an open field test (TOTDIST, HACT, 
and CTRDIST): 75-110 (left) and 115-145 (right) min intervals. Male C57BL/6J 

non-cannulated mice were tested for effects of MK-801 in locomotion and the 

properties of cmpd39 to block these effects. Saline/saline (red, n= 60), cmpd39/MK 

(75 mg/kg/ 1 mg/kg, green, n=60), and saline/MK-801 (1 mg/kg, blue, n=120). A and 

B. Total distance traveled (TOT DIST). C and D. Horizontal distance traveled 

(HACT). E and F. Center distance traveled (CTRDIST). Data are expressed as 

mean ± S.E.M. * Significant differences between cmpd39/MK and saline/saline 

control group (p<0.001). # Significant differences between saline/MK and 

saline/saline control group (p<0.01). 
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Fig. 5.27. Cmpd39 and MK-801 effect in an open field test (STRCNT, RMOVNO, 
and CTRTIME): 75-110 (left) and 115-145 (right) min intervals. Male C57BL/6J 

non-cannulated mice were tested for effects of MK-801 in locomotion and the 

properties of cmpd39 to block these effects. Saline/saline (red, n= 60), cmpd39/MK 

(75 mg/kg/ 1 mg/kg, green, n=60), and saline/MK-801 (1 mg/kg, blue, n=120). A and 

B. Repetitive fine movements (STRCNT). C and D. Upright rearing movements 

(RMOVNO). E and F. Time spent in center region (CTRTIME). Data are expressed 

as mean ± S.E.M. * Significant differences between cmpd39/MK and saline/saline 

control group (p<0.001). # Significant differences between saline/MK and 

saline/saline control group (p<0.01). 
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Parameter 

 

Interval (min) 

 

F value (df1,df2) 

 

p value 

75-110 F (2, 285) = 35.61 <0.0001HACT 

115-145 F (2, 249) = 130.1 <0.0001

75-110 F (2, 429) = 31.7 <0.0001TOTDIST 

115-145 F (2, 249) = 53.70 <0.0001

75-110 F (2, 285) = 41.85 <0.0001FINE MOVEMENTS 

115-145 F (2, 249) = 142.6, <0.0001

75-110 F (2, 285) = 20.69 <0.0001CTRDIST 

115-145 F (2, 249) = 63.25 --- 

75-110 F (2, 285) = 68.75 <0.0001CTRTIME 

115-145 F (2, 187) = 1.464 0.2340 

75-110 F (2, 285) = 55.99 <0.0001REAR MOVEMENTS 

115-145 F (2, 237) = 16.39 <0.0001

 
Table 5.4. Statistical data obtained for cmpd39 dose dependent effect in the 
open field locomotion test (2 h) for non-cannulated male mice during the two 
intervals investigated (75-110 and 115-145). Male C57BL/6J non-cannulated mice 

were tested for effects of MK-801 in locomotion and the properties of cmpd39 to 

block these effects. Mice were investigated immediately after finishing ASR test. 

Male C57BL/6J non-cannulated mice were tested. HACT: Horizontal distance 

traveled. TOTDIST: Total distance traveled. FINE MOVEMENTS: Repetitive fine 

movements. CTRDIST: Distance traveled in the center region. CTRTIME: Time 

spent in the center region. REAR MOVEMENTS: Upright rearing movements. Df: 

degrees of freedom. 
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FUTURE PLANS 

 

Immediate future investigation should include testing OT and cmpd39 in the 

startle response model using amphetamine. This psychotomimetic has been 

historically used to identify typical antipsychotic drugs through the dopaminergic 

system [189]. An amphetamine PPI disruption effect should be demonstrated first 

with a subsequent investigation of the potential OT and cmpd39 to regulate 

dopaminergic neurotransmission in schizophrenia. 

The locomotion activity tests showed promising effects for cmpd39 to 

overcome MK-801 hyperactivity. On the contrary, MK-801-dependent hyperactivity 

could not be mitigated by OT at any dose tested. Thorough investigation of these 

effects should include repeating the open field locomotion test administering either 

OT or cmpd39 at t=0 min and immediately placing the mice in the activity chambers. 

After 30 min the mice should be removed from the chambers to receive an MK-801 

dose and returned to the boxes to assess activity for at least another 90 min. This 

scheme should provide information on the effects of the test drug alone from the first 

30 min, and also it will offer valuable data about the half life of OT and cmpd39. 

An interesting approach would be to test these compounds in a mouse line 

that expresses low levels of the NMDA R1 subunit (NR1) of the NMDA receptor that 

has been generated to model endogenous NMDA hypofunction. These mutant mice 

showed increased locomotor activity, increased acoustic startle reactivity, and 

deficits in prepulse inhibition (PPI) of acoustic startle [299] 

One of the main mouse behavioral assays that are relevant to the symptoms 

of autism is sociability. Acquiring a social memory as opposed to remembering an 
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object is key to normal human functioning, and impairments in social interaction are 

a defining feature of autism [324]. Revisiting the social memory test should provide 

important data to assess drug efficacy to recuperate this type of memory. In order to 

investigate this behavior, there is a need to obtain OT-KO mouse as there is 

compelling evidence that shows the social memory deficits that these mice have [62, 

64]. This model should be used to reproduce the reported findings that showed that 

OT regulates social memory and to assess the efficacy of cmpd39 to mimic the OT 

effects. We have recently established communications with Dr. W. Scott Young from 

the Laboratory of Cellular and Molecular Regulation at the NIMH and he has agreed 

to kindly provide us with a breeding pair of this mouse line. His group has also 

developed a Cre-loxP conditional knockout mouse line of the oxytocin receptor. This 

mice line could be useful to allow inactivation of the receptor in specific sites at 

defined times to better understand the roles of the OTR [325].  

The Mouse Behavioral Phenotyping Laboratory, directed by Dr. Sheryl Moy, 

has been developing a mouse test for repetitive, restricted behaviors which are a 

core symptom of autism. Their results show that the mouse strain NR1neo/neo 

present more repetitive nose poke responses that wildtype mice [326]. This lab has 

also reported low social preference, abnormal overt motoric stereotypy, and 

resistance to changes in a learned pattern of behavior for the inbred mouse strain 

C58/J [327]. It would be interesting to investigate the effects of OT and cmpd39 to 

assess if these molecules can modify these behaviors. 

Finally, the validated selective molecules that will be obtained through the 

HTS at the NIH screening center (see chapter 3) will undergo testing to evaluate 
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their effects on OT-regulated complex behaviors. Initially, these compounds will be 

tested in the acoustic startle response and open field locomotion tests to calculate 

their influence in regulation of these behaviors in comparison to the natural ligand 

OT.  

 



CHAPTER 6 

 

FUTURE PLANS 

 

The oxytocin pathway is a very intriguing and exciting system that promises 

interesting advances in deciphering the mystery of how complex behavior is 

regulated (see fig.6.1.). We could take that knowledge and use it to our advantage to 

treat some neuropsychiatry disorders that thus far have only been addressed and 

treated to cope with symptoms rather than addressing the underlying causes. Many 

options and routes are available to provide new information on this system, from 

molecular pharmacology to provide insight on how prospective agonists and 

allosteric modulators activate the OT pathway to human studies that could, in the 

future, be used as therapeutical tools to improve the quality of life of patients who 

have been diagnosed with complex neuropsychiatric disorders, such as 

schizophrenia, autism spectrum disorders, depression, compulsive-obsessive 

disorders. This chapter intends to cover some of the possibilities that the 

investigation of the OT pathway can provide to the advancing of the understanding 

of the neuropharmacological control of social behavior. Short-term future plans have 

been already discussed at the end of each individual chapter. 
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Fig.6.1. A simple cycle of life illustrates numerous points at which OT may 
affect behaviors and physiology to facilitate the propagation of the species. 
Picture borrowed from [102]. 
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High-throughput screening campaign 

The main goal of this dissertation work was to identify small molecules probes 

of the OT pathway. Significant progress has been made; however, we determined 

that screening a larger library is necessary to make greater progress. The ultra-

highthroughput screen campaign is being done at the Scripps High Throughput 

Screening Core in Florida. The initial hits from that campaign will be selected by 

statistical analysis and cluster sampling. Confirmation of these hits will include EC50 

calculations, structure and purity assessment of the original sample and resynthesis, 

purification and/or purchase of the compounds for further investigation. The 

successful actives will be prioritized according to selectivity against vasopressin 

receptors, developability of the molecules, mechanism of action, synthetic 

tractability, and novelty of the structures. The hit-to-lead plan will include activity-

structure relationship assays (SAR), and the chemistry plan will cover the definition 

of the key hurdles for each series and the definition of a lead compound. 

The optimization of the lead compounds will be focused on in vivo assays, 

drug metabolism and pharmacokinetics (DMPK) studies, solubility, permeability, and 

toxicity assessment. The in vivo assays will focus in mechanism of action 

confirmation by pharmacokinetic/ pharmacodynamic (pk/pd) and efficacy 

evaluations. The DMPK studies should include in vivo and in vitro (CYP450). Finally, 

toxicity should be evaluated at least in vitro, through obtaining a consensus value 

(CV) for the ion channel h-erg and the evaluation in hepatocytes, and in vivo, by 

acute and chronic exposure of the compound for 7 days in rats.  
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Molecular pharmacology of the OTR system 

One possible approach that could be followed in the future would be to 

investigate the molecular pharmacology of the validated small molecules. In the near 

future, it would be interesting to set up a research project to investigate how and 

where compound 39 binds to the receptor. Mutagenesis studies should answer 

these questions and provide data for concise SAR studies. 

The discovery and validation of positive allosteric modulators of the OTR 

would open new scenery that has never been reported. Interesting research topics 

would include molecular pharmacology that will investigate binding site, allosteric 

activity (how does the molecule enhance receptor activation from a distance), and 

receptor active conformations.  

 

Mouse models for regulation of complex behavior 

Since we have confirmed that OT and compound 39 reverse prepulse 

inhibition deficits in MK-801-treated mice [328], it would be interesting to pursue the 

investigation of the mechanism that underlies this regulation. An initial step should 

include distinction, if any, between regulation of this phenomenon through the 

dopaminergic or glutaminergic pathways. The results would support the use of 

compound 39 as a probe to discern the intricacy of the OTR system and its 

involvement in complex behaviors and neuropsychiatric diseases. 

One of the main mouse behavioral assays that are relevant to the symptoms 

of autism is sociability. Acquiring a social memory as opposed to remembering an 

object is key to normal human functioning, and impairments in social interaction are 
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a defining feature of autism [324]. Revisiting the social memory test described in 

Chapter 5 should provide important data to assess drug efficacy to recuperate this 

type of memory. These experiments would benefit from the use of OT-KO mouse as 

there is compelling evidence that these mice display deficits in social memory [62, 

64]. Dr. W. Scott Young from the Laboratory of Cellular and Molecular Regulation at 

the NIMH has agreed to provide us with a breeding pair of OT-KO mice. Further 

investigation of social memory using conditional OT and OTR knockouts [325, 329] 

and tissue-specific knockout will allow also more detailed analyses of the role of the 

OT pathway in social memory [102].  

The Mouse Behavioral Phenotyping Laboratory, directed by Dr. Sheryl Moy, 

has been developing a mouse test for repetitive, restricted behaviors which are a 

core symptom of autism. Their results show that the mouse strain NR1neo/neo 

presents more repetitive nose poke responses than wildtype mice [326]. This lab has 

also reported low social preference, abnormal overt motoric stereotypy, and 

resistance to changes in a learned pattern of behavior for the inbred mouse strain 

C58/J [327]. It would be interesting to investigate the effects of OT and compound 

39 to assess if these molecules can modify these behaviors. 

 

Use of OT and agonists as therapeutic tolls for the treatment of complex 

behavior 

The involvement of OT in these stages of human behavior promises a variety 

of therapeutic benefits that need to be explored. OT, OTR selective agonists, and 

positive allosteric modulators will enrich the current knowledge on the OT system 
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and will help elucidate the roles of OT in establishing and regulating complex 

behaviors at the CNS level. They will also serve as new chemical tools to elucidate 

the complex roles for OT in these behaviors, and they will provide new potential 

leads for a drug discovery campaign in the treatment of specific neuropsychiatric 

disorders.  

 

Sexual behavior 

Since OT is involved in both men and women’s sexual behavior, could OT 

and OTR agonists be the ecstasy (MDMA) of the future? Certainly, OT and any 

molecule that activates the OTR receptor could be evaluated for treatment of 

anorgasmia or other sexual dysfunctions. 

 

Generosity 

Similar to the trust game, intranasal OT increases generosity (Subject 1 gives 

money to Subject 2 while taking into consideration the amount Subject 2 finds 

acceptable), but not overall altruism (Subject 1 gives to Subject 2 with no feedback 

from Subject 2 [67]). Therefore, OT seems to particularly affect the ability to 

understand others’ emotions, i.e., affects empathy. Intranasal OT increases the 

amount of time spent gazing at the eye region of human faces [70] as well as the 

likelihood of recalling a happy face [330]. Intranasal OT also improves the ability to 

infer the mental state of others from social cues in the eye region [68]. Similarly, 

intranasal OT attenuates feelings of negativity towards faces conditioned with 

negative affective ratings, particularly in faces with direct gaze [331]. OT may thus 

increase feelings of trust and empathy by increasing eye gaze and subsequent 
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understanding of social cues. Overall, this line of research should investigate further 

the findings that OT enhances feelings of generosity, trust, and may aid in detection 

and understanding of others’ feelings (empathy) [102]. Using allosteric modulators in 

human trust and generosity tests, specifically using the intranasal route, would allow 

testing the effects of the endogenous hormone avoiding use of large doses of OT.  

 

Depression, anxiety, and mood disorders 

OT imbalances have been associated with both anxiety and depression, 

though direct evidence for OT’s role as a therapeutic agent is still awaited. Given the 

presence of OT receptors in the hypothalamus and extended amygdala and its link 

to HPA function and mood, there is potential for therapeutic use of OT in mood 

disorders [89, 102, 332-334]. 

 

Autism 

Autism spectrum disorders (ASD) are labeled as pervasive developmental 

disorders, and can include other medical disorders, such as retardation and 

seizures, and psychological problems, such as heightened anxiety [335]. Recently, 

much effort has gone into determining the underlying causes of autism and related 

disorders. The positive relationship between OT and formation of social bonds in 

animal studies [336] has led many to believe that OT abnormalities may play a part 

in autism. Intravenous infusion of OT into adults with autism and Asperger’s disorder 

significantly reduces both number and severity of repetitive behaviors (such as 

repeating, self-injury, and touching) and increases ability to comprehend and 
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remember the affective component of spoken words (happy, indifferent, angry, or 

sad) [158, 159]. There is strong evidence of the possible link between OT and 

autism, as well as other neuropsychiatric disorders [25, 102]. Investigation of the 

effects of OTR agonists and allosteric modulators in core symptoms tests would 

provide the benefits of OT as a therapeutic tool without the side effects.  

 

Schizophrenia 

Prepulse inhibition (PPI) of the startle reflex is displayed across a variety of 

species in which the reflexive reaction to a sudden, intense sensory stimulus is 

reduced by a preceding, weaker sensory stimulus. This gating process is an 

attentional mechanism that filters potentially distracting stimuli so that attention can 

be focused on relevant information. Deficits in sensorimotor gating are a feature of 

many psychiatric and neurological disorders including schizophrenia [102, 186, 187, 

337, 338]. OT levels may be elevated in patients with psychiatric disorders such as 

schizophrenia [160] and OCD [174, 177], although not all studies find such a 

difference [339]. Using animal models, PPI has been disrupted in a manner similar 

to that seen in schizophrenics by the administration of psychotomimetic drugs [290, 

311, 340], particularly those that affect the dopamine and glutamate/NMDA 

receptors [341]. A recent study reports lower levels of OT in hyponatremic 

schizophrenics who display altered HPA activity [161]. However, use of 

antipsychotics such as amperozide (serotonin antagonist) and clozapine (dopamine 

and partial serotonin agonist) significantly increases plasma OT levels [193], 

indicating that OT may act as a natural antipsychotic. Indeed, OT restores PPI that is 
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disrupted in animal models by dizocilpine (non-competitive NMDA antagonist) and 

amphetamine (indirect dopamine agonist) [139, 328]. Furthermore, OT KO mice 

exhibit greater PPI deficits with treatment of phencyclidine (PCP, an NMDA 

antagonist) than do WT mice [138], indicating that OT in particular affects the 

glutaminergic component of PPI, and likely underlies disruptions in sensory gating 

observed in schizophrenic patients [342]. Interestingly, levels of plasma OT in 

schizophrenics positively predicts their ability to identify facial emotions [161], further 

implicating OT in the social aspects of schizophrenia [102]. Preliminary results 

support the hypothesis that OT has therapeutic effects on the negative symptoms of 

schizophrenia and that intranasal oxytocin may be an effective method of 

augmenting established antipsychotic medication [194, 195]. Further investigation 

should be pursued to assess the antipsychotic effects of OT. Using small-molecule 

OTR agonists should provide information minimizing the side effects. In addition, the 

use of positive allosteric modulators should take advantage of the endogenous 

presence of OT and enhance its natural antipsychotic effects. 

 

Addiction 

OT within the CNS has been shown to inhibit the development of tolerance to 

morphine, to attenuate various symptoms of morphine withdrawal, to decrease 

intravenous self-administration of heroin, and to facilitate behavioral sensitization to 

cocaine. Tolerance to ethanol was inhibited by OT [137, 180, 343]. Because 

adaptation and learning are likely to be involved in the neural events leading to drug 

tolerance and dependence, OT is demonstrated to influence the development of 



 254 
 

tolerance of and dependence on abused drugs, like opiates and heroin [344].  It is 

surprising that clinical studies of OT and addiction have not been conducted. 

Positive results in this field are almost warranted. 

 

Atypical antipsychotics: prospective drugs for autism and OCD? 

Risperidone, an atypical antipsychotic, is the only FDA approved treatment for 

autism [345, 346]. Specifically, it is approved for children with autism that is 

accompanied by irritability, including aggression, self-injury, tantrums, and mood 

swings [347, 348]. Risperidone reduced interfering repetitive behavior as well as 

aggression, but it did not lead to improvement in social relatedness or language 

[349, 350]. Risperidone significantly improved sensory motor behaviors, affectual 

reactions, and sensory responses. However, there was no significant change on the 

social relationship to people or language [351]. Risperidone was also used in a 

randomized control trial for the treatment of fluvoxamine- refractory OCD [352]. 

Treatment of pervasive developmental disorder patients with olanzapine, another 

atypical antipsychotic, improved core social and language impairments in addition to 

other disruptive behaviors and irritability [347, 353-356]. Quetiapine, ziprasidone, 

and aripiprazole have also been examined in patients with ASD, but none reported 

significant improvements in core social and language impairments. Larger trials are 

underway for olanzapine and aripiprazole [347, 357].  

These studies suggest efficacy for use of atypical antipsychotics in treating 

interfering repetitive behaviors in ASD [345]. It is interesting to note that cmpd 39 

and OT show antipsychotic like effects in our animal model of PPI. Further 



 255 
 

investigation needs to address whether this compound acts as an atypical drug. 

Promising results from these experiments would suggest that compounds that 

activate the OT pathway would be valid treatment strategies for schizophrenia, 

because of their antipsychotic effects, as well as some of the core symptoms of 

autism and even OCD. 
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