2 research outputs found

    Legionella risk assessment in cruise ships and ferries.

    Get PDF
    Introduction The increasing development of marine traffic has led to a rise in the incidence of legionellosis among travellers. It occurs in similar environments, especially closed and crowded, and aboard ships Legionella survives and multiplies easily in water pipes, spreading into the environment through air conditioning systems and water distribution points. Although in recent years in the construction of cruise ships preventive measures aimed at curbing the proliferation of Legionella (design, materials, focus on the operation and maintenance of the water system), have been taken account, little or no attention has been paid to small ships which, in many cases, are old and not well maintained. Objective The aim of the study was to evaluate the frequency and severity of Legionella contamination in ferries and cruise ships in order to adopt more specific control measures. Material and Methods A prevalence study was carried out on 10 ferries and 6 cruise ships docking or in transit across the port of Messina (Sicily, Italy). Water and air samples collected from many critical points were tested for qualitative and quantitative identification of Legionella. Results and conclusions Legionella pneumophila sg 1 was isolated from the samples of shower and tap water in 7 (70%) of the 10 ferries examined, and in 3 (33%) of the 6 cruise ships examined, and L. pneumophila sg 2–14 in 8 (80%) and 1 (16.7%) of these ships, respectively. No Legionella contamination was found in whirlpool baths, air and ice samples. In conclusion, the data obtained confirm higher levels of Legionella contamination in local ferries and cruise ships, underlining the need to adopt corrective actions more specific for these smaller vessels

    COVID-19 Vaccines: Current and Future Perspectives

    No full text
    Currently available vaccines against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) are highly effective but not able to keep the coronavirus disease 2019 (COVID-19) pandemic completely under control. Alternative R&D strategies are required to induce a long-lasting immunological response and to reduce adverse events as well as to favor rapid development and large-scale production. Several technological platforms have been used to develop COVID-19 vaccines, including inactivated viruses, recombinant proteins, DNA- and RNA-based vaccines, virus-vectored vaccines, and virus-like particles. In general, mRNA vaccines, protein-based vaccines, and vectored vaccines have shown a high level of protection against COVID-19. However, the mutation-prone nature of the spike (S) protein affects long-lasting vaccine protection and its effectiveness, and vaccinated people can become infected with new variants, also showing high virus levels. In addition, adverse effects may occur, some of them related to the interaction of the S protein with the angiotensin-converting enzyme 2 (ACE-2). Thus, there are some concerns that need to be addressed and challenges regarding logistic problems, such as strict storage at low temperatures for some vaccines. In this review, we discuss the limits of vaccines developed against COVID-19 and possible innovative approaches
    corecore