11 research outputs found
Neurocognitive outcome and mental health in children with tyrosinemia type 1 and phenylketonuria:A comparison between two genetic disorders affecting the same metabolic pathway
Tyrosinemia type 1 (TT1) and phenylketonuria (PKU) are both inborn errors of phenylalanine-tyrosine metabolism. Neurocognitive and behavioral outcomes have always featured in PKU research but received less attention in TT1 research. This study aimed to investigate and compare neurocognitive, behavioral, and social outcomes of treated TT1 and PKU patients. We included 33 TT1 patients (mean age 11.24 years; 16 male), 31 PKU patients (mean age 10.84; 14 male), and 58 age- and gender-matched healthy controls (mean age 10.82 years; 29 male). IQ (Wechsler-subtests), executive functioning (the Behavioral Rating Inventory of Executive Functioning), mental health (the Achenbach-scales), and social functioning (the Social Skills Rating System) were assessed. Results of TT1 patients, PKU patients, and healthy controls were compared using Kruskal-Wallis tests with post-hoc Mann-Whitney U tests. TT1 patients showed a lower IQ and poorer executive functioning, mental health, and social functioning compared to healthy controls and PKU patients. PKU patients did not differ from healthy controls regarding these outcome measures. Relatively poor outcomes for TT1 patients were particularly evident for verbal IQ, BRIEF dimensions "working memory", "plan and organize" and "monitor", ASEBA dimensions "social problems" and "attention problems", and for the SSRS "assertiveness" scale (all p value
Movement disorders and nonmotor neuropsychological symptoms in children and adults with classical galactosemia
Although movement disorders (MDs) are known complications, the exact frequency and severity remains uncertain in patients with classical galactosemia, especially in children. We determined the frequency, classification and severity of MDs in a cohort of pediatric and adult galactosemia patients, and assessed the association with nonmotor neuropsychological symptoms and daily functioning. Patients from seven centers in the United Kingdom and the Netherlands with a confirmed galactosemia diagnosis were invited to participate. A videotaped neurological examination was performed and an expert panel scored the presence, classification and severity of MDs. Disease characteristics, nonmotor neuropsychological symptoms, and daily functioning were evaluated with structured interviews and validated questionnaires (Achenbach, Vineland, Health Assessment Questionnaire, SIP68). We recruited 37 patients; 19 adults (mean age 32.6 years) and 18 children (mean age 10.7 years). Subjective self-reports revealed motor symptoms in 19/37 (51.4%), similar to the objective (video) assessment, with MDs in 18/37 patients (48.6%). The objective severity scores were moderate to severe in one third (6/37). Dystonia was the overall major feature, with additional tremor in adults, and myoclonus in children. Behavioral or psychiatric problems were present in 47.2%, mostly internalizing problems, and associated with MDs. Daily functioning was significantly impaired in the majority of patients. Only one patient received symptomatic treatment for MDs. We show that MDs and nonmotor neuropsychological symptoms are frequent in both children and adults with classical galactosemia
Fertility in classical galactosaemia, a study of N-glycan, hormonal and inflammatory gene interactions.
BACKGROUND
Classical Galactosaemia (CG) (OMIM #230400) is a rare inborn error of galactose metabolism caused by deficiency of the enzyme galactose-1-phosphate uridylyltransferase (GALT). Long-term complications persist in treated patients despite dietary galactose restriction with significant variations in outcomes suggesting epigenetic glycosylation influences. Primary Ovarian Insufficiency (POI) is a very significant complication affecting females with follicular depletion noted in early life. We studied specific glycan synthesis, leptin system and inflammatory gene expression in white blood cells as potential biomarkers of infertility in 54 adults with CG adults (27 females and 27 males) (age range 17-51Â yr) on a galactose-restricted diet in a multi-site Irish and Dutch study. Gene expression profiles were tested for correlation with a serum Ultra-high Performance Liquid Chromatography (UPLC)-Immunoglobulin (IgG)-N-glycan galactose incorporation assay and endocrine measurements.
RESULTS
Twenty five CG females (93%) had clinical and biochemical evidence of POI. As expected, the CG female patients, influenced by hormone replacement therapy, and the healthy controls of both genders showed a positive correlation between log leptin and BMI but this correlation was not apparent in CG males. The strongest correlations between serum leptin levels, hormones, G-ratio (galactose incorporation assay) and gene expression data were observed between leptin, its gene and G-Ratios data (r = - 0.68) and (r = - 0.94) respectively with lower circulating leptin in CG patients with reduced IgG galactosylation. In CG patients (males and females analysed as one group), the key glycan synthesis modifier genes MGAT3 and FUT8, which influence glycan chain bisecting and fucosylation and subsequent cell signalling and adhesion, were found to be significantly upregulated (p < 0.01 and p < 0.05) and also the glycan synthesis gene ALG9 (p < 0.01). Both leptin signalling genes LEP and LEPR were found to be upregulated (p < 0.01) as was the inflammatory genes ANXA1 and ICAM1 and the apoptosis gene SEPT4 (p < 0.01).
CONCLUSIONS
These results validate our previous findings and provide novel experimental evidence for dysregulation of genes LEP, LEPR, ANXA1, ICAM1 and SEPT4 for CG patients and combined with our findings of abnormalities of IgG glycosylation, hormonal and leptin analyses elaborate on the systemic glycosylation and cell signalling abnormalities evident in CG which likely influence the pathophysiology of POI
Mudd’s disease (MAT I/III deficiency): a survey of data for MAT1A homozygotes and compound heterozygotes
Background: This paper summarizes the results of a group effort to bring together the worldwide available data on patients who are either homozygotes or compound heterozygotes for mutations in MAT1A. MAT1A encodes the subunit that forms two methionine adenosyltransferase isoenzymes, tetrameric MAT I and dimeric MAT III, that catalyze the conversion of methionine and ATP to S-adenosylmethionine (AdoMet). Subnormal MAT I/III activity leads to hypermethioninemia. Individuals, with hypermethioninemia due to one of the MAT1A mutations that in heterozygotes cause relatively mild and clinically benign hypermethioninemia are currently often being flagged in screening programs measuring methionine elevation to identify newborns with defective cystathionine β-synthase activity. Homozygotes or compound heterozygotes for MAT1A mutations are less frequent. Some but not all, such individuals have manifested demyelination or other CNS abnormalities. Purpose of the study The goals of the present effort have been to determine the frequency of such abnormalities, to find how best to predict whether they will occur, and to evaluate the outcomes of the variety of treatment regimens that have been used. Data have been gathered for 64 patients, of whom 32 have some evidence of CNS abnormalities (based mainly on MRI findings), and 32 do not have such evidence. Results and Discussion The results show that mean plasma methionine concentrations provide the best indication of the group into which a given patient will fall: those with means of 800 μM or higher usually have evidence of CNS abnormalities, whereas those with lower means usually do not. Data are reported for individual patients for MAT1A genotypes, plasma methionine, total homocysteine (tHcy), and AdoMet concentrations, liver function studies, results of 15 pregnancies, and the outcomes of dietary methionine restriction and/or AdoMet supplementation. Possible pathophysiological mechanisms that might contribute to CNS damage are discussed, and tentative suggestions are put forth as to optimal management
Mudd's disease (MAT I/III deficiency) : a survey of data for MAT1A homozygotes and compound heterozygotes
Background: This paper summarizes the results of a group effort to bring together the worldwide available data on patients who are either homozygotes or compound heterozygotes for mutations in MAT1A. MAT1A encodes the subunit that forms two methionine adenosyltransferase isoenzymes, tetrameric MAT I and dimeric MAT III, that catalyze the conversion of methionine and ATP to S-adenosylmethionine (AdoMet). Subnormal MAT I/III activity leads to hypermethioninemia. Individuals, with hypermethioninemia due to one of the MAT1A mutations that in heterozygotes cause relatively mild and clinically benign hypermethioninemia are currently often being flagged in screening programs measuring methionine elevation to identify newborns with defective cystathionine beta-synthase activity. Homozygotes or compound heterozygotes for MAT1A mutations are less frequent. Some but not all, such individuals have manifested demyelination or other CNS abnormalities. Purpose of the study: The goals of the present effort have been to determine the frequency of such abnormalities, to find how best to predict whether they will occur, and to evaluate the outcomes of the variety of treatment regimens that have been used. Data have been gathered for 64 patients, of whom 32 have some evidence of CNS abnormalities (based mainly on MRI findings), and 32 do not have such evidence. Results and Discussion: The results show that mean plasma methionine concentrations provide the best indication of the group into which a given patient will fall: those with means of 800 mu M or higher usually have evidence of CNS abnormalities, whereas those with lower means usually do not. Data are reported for individual patients for MAT1A genotypes, plasma methionine, total homocysteine (tHcy), and AdoMet concentrations, liver function studies, results of 15 pregnancies, and the outcomes of dietary methionine restriction and/or AdoMet supplementation. Possible pathophysiological mechanisms that might contribute to CNS damage are discussed, and tentative suggestions are put forth as to optimal management
Mudd's disease (MAT I/III deficiency) : a survey of data for MAT1A homozygotes and compound heterozygotes
Background: This paper summarizes the results of a group effort to bring together the worldwide available data on patients who are either homozygotes or compound heterozygotes for mutations in MAT1A. MAT1A encodes the subunit that forms two methionine adenosyltransferase isoenzymes, tetrameric MAT I and dimeric MAT III, that catalyze the conversion of methionine and ATP to S-adenosylmethionine (AdoMet). Subnormal MAT I/III activity leads to hypermethioninemia. Individuals, with hypermethioninemia due to one of the MAT1A mutations that in heterozygotes cause relatively mild and clinically benign hypermethioninemia are currently often being flagged in screening programs measuring methionine elevation to identify newborns with defective cystathionine beta-synthase activity. Homozygotes or compound heterozygotes for MAT1A mutations are less frequent. Some but not all, such individuals have manifested demyelination or other CNS abnormalities. Purpose of the study: The goals of the present effort have been to determine the frequency of such abnormalities, to find how best to predict whether they will occur, and to evaluate the outcomes of the variety of treatment regimens that have been used. Data have been gathered for 64 patients, of whom 32 have some evidence of CNS abnormalities (based mainly on MRI findings), and 32 do not have such evidence. Results and Discussion: The results show that mean plasma methionine concentrations provide the best indication of the group into which a given patient will fall: those with means of 800 mu M or higher usually have evidence of CNS abnormalities, whereas those with lower means usually do not. Data are reported for individual patients for MAT1A genotypes, plasma methionine, total homocysteine (tHcy), and AdoMet concentrations, liver function studies, results of 15 pregnancies, and the outcomes of dietary methionine restriction and/or AdoMet supplementation. Possible pathophysiological mechanisms that might contribute to CNS damage are discussed, and tentative suggestions are put forth as to optimal management