143 research outputs found

    Comprehensive Molecular and Clinicopathologic Analysis of 200 Pulmonary Invasive Mucinous Adenocarcinomas Identifies Distinct Characteristics of Molecular Subtypes

    Get PDF
    PURPOSE: Invasive mucinous adenocarcinoma (IMA) is a unique subtype of lung adenocarcinoma, characterized genomically by frequent KRAS mutations or specific gene fusions, most commonly involving NRG1. Comprehensive analysis of a large series of IMAs using broad DNA- and RNA-sequencing methods is still lacking, and it remains unclear whether molecular subtypes of IMA differ clinicopathologically. EXPERIMENTAL DESIGN: A total of 200 IMAs were analyzed by 410-gene DNA next-generation sequencing (MSK-IMPACT; n = 136) or hotspot 8-oncogene genotyping (n = 64). Driver-negative cases were further analyzed by 62-gene RNA sequencing (MSK-Fusion) and those lacking fusions were further tested by whole-exome sequencing and whole-transcriptome sequencing (WTS). RESULTS: Combined MSK-IMPACT and MSK-Fusion testing identified mutually exclusive driver alterations in 96% of IMAs, including KRAS mutations (76%), NRG1 fusions (7%), ERBB2 alterations (6%), and other less common events. In addition, WTS identified a novel NRG2 fusion (F11R-NRG2). Overall, targetable gene fusions were identified in 51% of KRAS wild-type IMAs, leading to durable responses to targeted therapy in some patients. Compared with KRAS-mutant IMAs, NRG1-rearranged tumors exhibited several more aggressive characteristics, including worse recurrence-free survival (P \u3c 0.0001). CONCLUSIONS: This is the largest molecular study of IMAs to date, where we demonstrate the presence of a major oncogenic driver in nearly all cases. This study is the first to document more aggressive characteristics of NRG1-rearranged IMAs, ERBB2 as the third most common alteration, and a novel NRG2 fusion in these tumors. Comprehensive molecular testing of KRAS wild-type IMAs that includes fusion testing is essential, given the high prevalence of alterations with established and investigational targeted therapies in this subset

    Interaction between Myelodysplasia-Related Gene Mutations and Ontogeny in Acute Myeloid Leukemia

    Get PDF
    Accurate classification and risk stratification are critical for clinical decision making in patients with acute myeloid leukemia (AML). In the newly proposed World Health Organization and International Consensus classifications of hematolymphoid neoplasms, the presence of myelodysplasia-related (MR) gene mutations is included as 1 of the diagnostic criteria for AML, AML-MR, based largely on the assumption that these mutations are specific for AML with an antecedent myelodysplastic syndrome. ICC also prioritizes MR gene mutations over ontogeny (as defined in the clinical history). Furthermore, European LeukemiaNet (ELN) 2022 stratifies these MR gene mutations into the adverse-risk group. By thoroughly annotating a cohort of 344 newly diagnosed patients with AML treated at the Memorial Sloan Kettering Cancer Center, we show that ontogeny assignments based on the database registry lack accuracy. MR gene mutations are frequently observed in de novo AML. Among the MR gene mutations, only EZH2 and SF3B1 were associated with an inferior outcome in the univariate analysis. In a multivariate analysis, AML ontogeny had independent prognostic values even after adjusting for age, treatment, allo-transplant and genomic classes or ELN risks. Ontogeny also helped stratify the outcome of AML with MR gene mutations. Finally, de novo AML with MR gene mutations did not show an adverse outcome. In summary, our study emphasizes the importance of accurate ontogeny designation in clinical studies, demonstrates the independent prognostic value of AML ontogeny, and questions the current classification and risk stratification of AML with MR gene mutations

    Molecular Predictors of Immunophenotypic Measurable Residual Disease Clearance in Acute Myeloid Leukemia

    Get PDF
    Measurable residual disease (MRD) is a powerful prognostic factor in acute myeloid leukemia (AML). However, pre-treatment molecular predictors of immunophenotypic MRD clearance remain unclear. We analyzed a dataset of 211 patients with pre-treatment next-generation sequencing who received induction chemotherapy and had MRD assessed by serial immunophenotypic monitoring after induction, subsequent therapy, and allogeneic stem cell transplant (allo-SCT). Induction chemotherapy led to MRD- remission, MRD+ remission, and persistent disease in 35%, 27%, and 38% of patients, respectively. With subsequent therapy, 34% of patients with MRD+ and 26% of patients with persistent disease converted to MRD-. Mutations in CEBPA, NRAS, KRAS, and NPM1 predicted high rates of MRD- remission, while mutations in TP53, SF3B1, ASXL1, and RUNX1 and karyotypic abnormalities including inv (3), monosomy 5 or 7 predicted low rates of MRD- remission. Patients with fewer individual clones were more likely to achieve MRD- remission. Among 132 patients who underwent allo-SCT, outcomes were favorable whether patients achieved early MRD- after induction or later MRD- after subsequent therapy prior to allo-SCT. As MRD conversion with chemotherapy prior to allo-SCT is rarely achieved in patients with specific baseline mutational patterns and high clone numbers, upfront inclusion of these patients into clinical trials should be considered

    Genomic profiling for clinical decision making in myeloid neoplasms and acute leukemia

    Get PDF
    Myeloid neoplasms and acute leukemias derive from the clonal expansion of hematopoietic cells driven by somatic gene mutations. Although assessment of morphology plays a crucial role in the diagnostic evaluation of patients with these malignancies, genomic characterization has become increasingly important for accurate diagnosis, risk assessment, and therapeutic decision making. Conventional cytogenetics, a comprehensive and unbiased method for assessing chromosomal abnormalities, has been the mainstay of genomic testing over the past several decades and remains relevant today. However, more recent advances in sequencing technology have increased our ability to detect somatic mutations through the use of targeted gene panels, whole-exome sequencing, whole-genome sequencing, and whole-transcriptome sequencing or RNA sequencing. In patients with myeloid neoplasms, whole-genome sequencing represents a potential replacement for both conventional cytogenetic and sequencing approaches, providing rapid and accurate comprehensive genomic profiling. DNA sequencing methods are used not only for detecting somatically acquired gene mutations but also for identifying germline gene mutations associated with inherited predisposition to hematologic neoplasms. The 2022 International Consensus Classification of myeloid neoplasms and acute leukemias makes extensive use of genomic data. The aim of this report is to help physicians and laboratorians implement genomic testing for diagnosis, risk stratification, and clinical decision making and illustrates the potential of genomic profiling for enabling personalized medicine in patients with hematologic neoplasms

    Cancer therapy shapes the fitness landscape of clonal hematopoiesis.

    Get PDF
    Acquired mutations are pervasive across normal tissues. However, understanding of the processes that drive transformation of certain clones to cancer is limited. Here we study this phenomenon in the context of clonal hematopoiesis (CH) and the development of therapy-related myeloid neoplasms (tMNs). We find that mutations are selected differentially based on exposures. Mutations in ASXL1 are enriched in current or former smokers, whereas cancer therapy with radiation, platinum and topoisomerase II inhibitors preferentially selects for mutations in DNA damage response genes (TP53, PPM1D, CHEK2). Sequential sampling provides definitive evidence that DNA damage response clones outcompete other clones when exposed to certain therapies. Among cases in which CH was previously detected, the CH mutation was present at tMN diagnosis. We identify the molecular characteristics of CH that increase risk of tMN. The increasing implementation of clinical sequencing at diagnosis provides an opportunity to identify patients at risk of tMN for prevention strategies
    corecore