32 research outputs found

    Emergence and Evolution of Multidrug-Resistant Klebsiella pneumoniae with both blaKPC and blaCTX-M Integrated in the Chromosome

    Get PDF
    The extended-spectrum-β-lactamase (ESBL)- and Klebsiella pneumoniaecarbapenemase (KPC)-producing Enterobacteriaceae represent serious and urgent threats to public health. In a retrospective study of multidrug-resistant K. pneumoniae, we identified three clinical isolates, CN1, CR14, and NY9, carrying both blaCTX-M and blaKPC genes. The complete genomes of these three K. pneumoniae isolates were de novo assembled by using both short- and long-read whole-genome sequencing. In CR14 and NY9, blaCTX-M and blaKPC were carried on two different plasmids. In contrast, CN1 had one copy of blaKPC-2 and three copies of blaCTX-M-15 integrated in the chromosome, for which the blaCTX-M-15 genes were linked to an insertion sequence, ISEcp1, whereas the blaKPC-2 gene was in the context of a Tn4401a transposition unit conjugated with a PsP3-like prophage. Intriguingly, downstream of the Tn4401a-blaKPC-2-prophage genomic island, CN1 also carried a clustered regularly interspaced short palindromic repeat (CRISPR)-cas array with four spacers targeting a variety of K. pneumoniae plasmids harboring antimicrobial resistance genes. Comparative genomic analysis revealed that there were two subtypes of type I-E CRISPR-cas in K. pneumoniae strains and suggested that the evolving CRISPR-cas, with its acquired novel spacer, induced the mobilization of antimicrobial resistance genes from plasmids into the chromosome. The integration and dissemination of multiple copies of blaCTX-Mand blaKPC from plasmids to chromosome depicts the complex pandemic scenario of multidrug-resistant K. pneumoniae. Additionally, the implications from this study also raise concerns for the application of a CRISPR-cas strategy against antimicrobial resistance

    Extra-urogenital infection by Mycoplasma hominis in transplant patients: two case reports and literature review

    No full text
    Abstract Background Mycoplasma hominis is a facultative anaerobic bacterium commonly present in the urogenital tract. In recent years, M. hominis has increasingly been associated with extra-urogenital tract infections, particularly in immunosuppressed patients. Detecting M. hominis in a diagnostic laboratory can be challenging due to its slow growth rate, absence of a cell wall, and the requirements of specialized media and conditions for optimal growth. Consequently, it is necessary to establish guidelines for the detection of this microorganism and to request the appropriate microbiological work-up of immunosuppressed patients. Case Presentation We hereby present two cases of solid organ transplant patients who developed M. hominis infection. Microscopic examination of the bronchial lavage and pleural fluid showed no microorganisms. However, upon inoculating the specimens onto routine microbiology media, the organism was successfully identified and confirmation was performed using 16S rDNA sequencing. Both patients received appropriate treatment resulting in the resolution of M. hominis infection. Conclusions The prompt detection of M. hominis in a clinical specimen can have a significant impact on patient care by allowing for early intervention and ultimately resulting in more favorable clinical outcomes, especially in transplant patients

    Clinical Practice Guidelines by the Infectious Diseases Society of America (IDSA), American Academy of Neurology (AAN), and American College of Rheumatology (ACR): 2020 Guidelines for the Prevention, Diagnosis and Treatment of Lyme Disease

    No full text
    This evidence-based clinical practice guideline for the prevention, diagnosis, and treatment of Lyme disease was developed by a multidisciplinary panel representing the Infectious Diseases Society of America (IDSA), the American Academy of Neurology (AAN), and the American College of Rheumatology (ACR). The scope of this guideline includes prevention of Lyme disease, and the diagnosis and treatment of Lyme disease presenting as erythema migrans, Lyme disease complicated by neurologic, cardiac, and rheumatologic manifestations, Eurasian manifestations of Lyme disease, and Lyme disease complicated by coinfection with other tick-borne pathogens. This guideline does not include comprehensive recommendations for babesiosis and tick-borne rickettsial infections, which are published in separate guidelines. The target audience for this guideline includes primary care physicians and specialists caring for this condition such as infectious diseases specialists, emergency physicians, internists, pediatricians, family physicians, neurologists, rheumatologists, cardiologists and dermatologists in North America

    Clinical Practice Guidelines by the Infectious Diseases Society of America (IDSA), American Academy of Neurology (AAN), and American College of Rheumatology (ACR): 2020 Guidelines for the Prevention, Diagnosis and Treatment of Lyme Disease

    No full text
    This evidence-based clinical practice guideline for the prevention, diagnosis, and treatment of Lyme disease was developed by a multidisciplinary panel representing the Infectious Diseases Society of America (IDSA), the American Academy of Neurology (AAN), and the American College of Rheumatology (ACR). The scope of this guideline includes prevention of Lyme disease, and the diagnosis and treatment of Lyme disease presenting as erythema migrans, Lyme disease complicated by neurologic, cardiac, and rheumatologic manifestations, Eurasian manifestations of Lyme disease, and Lyme disease complicated by coinfection with other tick-borne pathogens. This guideline does not include comprehensive recommendations for babesiosis and tick-borne rickettsial infections, which are published in separate guidelines. The target audience for this guideline includes primary care physicians and specialists caring for this condition such as infectious diseases specialists, emergency physicians, internists, pediatricians, family physicians, neurologists, rheumatologists, cardiologists and dermatologists in North America

    Clinical Practice Guidelines by the Infectious Diseases Society of America, American Academy of Neurology, and American College of Rheumatology: 2020 Guidelines for the Prevention, Diagnosis, and Treatment of Lyme Disease

    No full text
    This evidence-based clinical practice guideline for the prevention, diagnosis, and treatment of Lyme disease was developed by a multidisciplinary panel representing the Infectious Diseases Society of America (IDSA), the American Academy of Neurology (AAN), and the American College of Rheumatology (ACR). The scope of this guideline includes prevention of Lyme disease, and the diagnosis and treatment of Lyme disease presenting as erythema migrans, Lyme disease complicated by neurologic, cardiac, and rheumatologic manifestations, Eurasian manifestations of Lyme disease, and Lyme disease complicated by coinfection with other tick-borne pathogens. This guideline does not include comprehensive recommendations for babesiosis and tick-borne rickettsial infections, which are published in separate guidelines. The target audience for this guideline includes primary care physicians and specialists caring for this condition such as infectious diseases specialists, emergency physicians, internists, pediatricians, family physicians, neurologists, rheumatologists, cardiologists and dermatologists in North America

    Limitations and Confusing Aspects of Diagnostic Testing for Neurologic Lyme Disease in the United States

    No full text
    In the United States, laboratories frequently offer multiple different assays for testing of cerebrospinal fluid (CSF) samples to provide laboratory support for the diagnosis of central nervous system Lyme disease (CNSLD). Often included among these diagnostic tests are the same enzyme immunoassays and immunoblots that are routinely used to detect the presence of antibodies to Borrelia burgdorferi in serum. However, performing these assays on CSF alone may yield positive results simply from passive diffusion of serum antibodies into the CSF. In addition, such tests are only U.S. Food and Drug Administration cleared and well validated for testing serum, not CSF. When performed using CSF, positive results from these assays do not establish the presence of intrathecal antibody production to B. burgdorferi and therefore should not be offered. The preferred test to detect intrathecal production of antibodies to B. burgdorferi is the antibody index assay, which corrects for passive diffusion of serum antibodies into CSF and requires testing of paired serum and CSF collected at approximately the same time. However, this assay also has limitations and should only be used to establish a diagnosis of CNSLD in conjunction with patient exposure history, clinical presentation, and other laboratory findings
    corecore