24 research outputs found

    RADIATION SYNTHESIS AND CHARACTERIZATION OF POLY(ACRYLAMIDE-CO-ACRYLIC ACID) HYDROGELS USED FOR THE ABSORPTION OF HEAVY METALS

    Get PDF
    The purpose of the paper is to present the synthesis and characterization of hydrogels prepared by free-radical copolymerization of acrylamide and acrylic acid in aqueous solutions using potassium persulfate as initiator and trimethylolpropane-trimethacrylate as crosslinker, via radiation technique. The influence of the absorbed dose on the swelling properties, diffusion coefficient and network parameters of hydrogels was investigated. The swelling of hydrogels loaded with metal cations (copper, chromium) was investigated

    The Improvement of the Resistance to Candida albicans

    Get PDF
    This paper presents the improvement of the antimicrobial character of woven fabrics based on cotton. The woven fabrics were cleaned in oxygen plasma and treated by padding with silver chloride and titanium dioxide particles. The existence of silver and titanium on woven fabrics was evidenced by electronic microscope images (SEM, EDAX) and by flame atomic absorption spectrophotometry. The antimicrobial tests were performed with two fungi: Candida albicans and Trichophyton interdigitale. The obtained antimicrobial effect was considerably higher compared to the raw fabrics. Treatment of dyed fabrics with a colloidal solution based on silver chloride and titanium dioxide particles does not considerably influence colour resistance of dyes

    Effects of Electron Beam Irradiation on the Mechanical, Thermal, and Surface Properties of Some EPDM/Butyl Rubber Composites

    No full text
    The effects of electron beam irradiation on the properties of ethylene propylene diene monomer (EPDM)/butyl rubber composites in presence of a polyfunctional monomer were investigated by means of differential scanning calorimetry (DSC), thermal analysis, scanning electron microscopy (SEM), attenuated total reflection absorption infrared spectroscopy (ATR-IR), and mechanical and surface energy measurements. The samples were exposed over a wide range of irradiation doses (20–150 kGy). The EPDM matrix was modified with butyl rubber, chlorobutyl rubber, and bromobutyl rubber. The gel content and crosslink density were found to increase with the electron beam irradiation dose. The values of the hardness and modulus increased gradually with the irradiation dose, while the tensile strength and elongation at break decreased with increasing irradiation dose. The EPDM/butyl rubber composites presented a higher thermal stability compared to the initial EPDM sample. The incorporation of butyl rubbers into the EPDM matrix led to an increase in material hydrophobicity. A similar trend was observed when the irradiation dose increased. The greatest change in the surface free energy and the contact angles occurs at an irradiation dose of 20 kGy. The Charlesby–Pinner plots prove the tendency to crosslinking as the irradiation dose increases

    ELASTOMERIC NANOCOMPOSITES DEVELOPMENT FOR O-RINGS MANUFACTURING

    No full text
    This paper presents studies on the development and characterization of nanocomposites based on natural rubber, plasticized starch, precipitated silica and layered clay such as organically modified montmorillonite (OMMT). Mixtures were made containing 0, 3 and 6 phr (parts per 100 parts rubber) OMMT, respectively. They were obtained by melt intercalation in a Brabender mixer at 12/80 rotations/min and 100-150ºC, for 10 minutes. Curing agents (sulfur and curing accelerators) were embedded on a laboratory roller at 90ºC, friction 1:1.1, processing time 5 minutes. Rubber specimens were obtained by compression, using a hydraulic press at 165ºC and a pressing force of 300 kN. Curing time, determined using the Monsanto rheometer, decreases with the increased amount of OMMT in the mixtures. At the same time, it was noticed that mixtures containing OMMT show improvement in physical-mechanical properties and resistance in various working environments specific to the food and pharmaceutical industry. Permanent compressive deformation 25%, 24hx70°C shows very good values for mixtures containing OMMT. The new types of nanocomposites may be used to obtain O-rings for the sugar industry or for other areas of application

    New Elastomeric Materials Based on Natural Rubber Obtained by Electron Beam Irradiation for Food and Pharmaceutical Use

    No full text
    The efficiency of polyfunctional monomers as cross-linking co-agents on the chemical properties of natural rubber vulcanized by electron beam irradiation was studied. The following polyfunctional monomers were used: trimethylolpropane-trimethacrylate, zinc-diacrylate, ethylene glycol dimethacrylate, triallylcyanurate and triallylisocyanurate. The electron beam treatment was done using irradiation doses in the range of 75 kGy–300 kGy. The gel fraction, crosslink density and effects of different aqueous solutions, by absorption tests, have been investigated as a function of polyfunctional monomers type and absorbed dose. The samples gel fraction and crosslink density were determined on the basis of equilibrium solvent-swelling measurements by applying the modified Flory–Rehner equation for tetra functional networks. The absorption tests were done in accordance with the SR ISI 1817:2015 using distilled water, acetic acid (10%), sodium hydroxide (1%), ethylic alcohol (96%), physiological serum (sodium chloride 0.9%) and glucose (glucose monohydrate 10%). The samples structure and morphology were investigated by Fourier Transform Infrared Spectroscopy and Scanning Electron Microscopy techniques

    Degradation Studies Realized on Natural Rubber and Plasticized Potato Starch Based Eco-Composites Obtained by Peroxide Cross-Linking

    No full text
    The obtaining and characterization of some environmental-friendly composites that are based on natural rubber and plasticized starch, as filler, are presented. These were obtained by peroxide cross-linking in the presence of a polyfunctional monomer used here as cross-linking co-agent, trimethylolpropane trimethacrylate. The influence of plasticized starch amount on the composites physical and mechanical characteristics, gel fraction and cross-link density, water uptake, structure and morphology before and after accelerated (thermal) degradation, and natural (for one year in temperate climate) ageing, was studied. Differences of two orders of magnitude between the degradation/aging methods were registered in the case of some mechanical characteristics, by increasing the plasticized starch amount. The cross-link density, water uptake and mass loss were also significant affected by the plasticized starch amount increasing and exposing for one year to natural ageing in temperate climate. Based on the results of Fourier Transform Infrared Spectroscopy (FTIR) and cross-link density measurements, reaction mechanisms attributed to degradation induced by accelerated and natural ageing were done. SEM micrographs have confirmed in addition that by incorporating a quantity of hydrophilic starch amount over 20 phr and by exposing the composites to natural ageing, and then degradability can be enhanced by comparing with thermal degradation
    corecore