6 research outputs found

    Confining Strings at High Temperature

    Get PDF
    We show that the high-temperature behaviour of the recently proposed confining strings reproduces exactly the correct large-N QCD result, for a large class of truncations of the long-range interaction between surface elements.Comment: 8 pages, no figure

    Superconductors with a Topological Gap

    No full text
    I review a new superconductivity mechanism in which the gap is opened through a topological mechanism and not through the Landau mechanism of spontaneous symmetry breaking. As a consequence, the low-energy effective theory which describes these new superconductors is not the Landau–Ginzburg theory, formulated in terms of a local-order parameter, but a topological-field theory formulated in terms of emerging gauge fields. This new mechanism is realized as global superconductivty in Josephson junction arrays and in thin superconducting films with thicknesses comparable to the superconducting coherence length, which exhibits emergent granularity

    Superinsulators: An Emergent Realisation of Confinement

    No full text
    Superinsulators (SI) are a new topological state of matter, predicted by our collaboration and experimentally observed in the critical vicinity of the superconductor-insulator transition (SIT). SI are dual to superconductors and realise electric-magnetic (S)-duality. The effective field theory that describes this topological phase of matter is governed by a compact Chern-Simons in (2+1) dimensions and a compact BF term in (3+1) dimensions. While in a superconductor the condensate of Cooper pairs generates the Meissner effect, which constricts the magnetic field lines penetrating a type II superconductor into Abrikosov vortices, in superinsulators Cooper pairs are linearly bound by electric fields squeezed into strings (dual Meissner effect) by a monopole condensate. Magnetic monopoles, while elusive as elementary particles, exist in certain materials in the form of emergent quasiparticle excitations. We demonstrate that at low temperatures magnetic monopoles can form a quantum Bose condensate (plasma in (2+1) dimensions) dual to the charge condensate in superconductors. The monopole Bose condensate manifests as a superinsulating state with infinite resistance, dual to superconductivity. The monopole supercurrents result in the electric analogue of the Meissner effect and lead to linear confinement of the Cooper pairs by Polyakov electric strings in analogy to quarks in hadrons. Superinsulators realise thus one of the mechanism proposed to explain confinement in QCD. Moreover, the string mechanism of confinement implies asymptotic freedom at the IR fixed point. We predict thus for superinsulators a metallic-like low temperature behaviour when samples are smaller than the string scale. This has been experimentally confirmed. We predict that an oblique version of SI is realised as the pseudogap state of high-TC superconductors

    Universal Upper Bound for the Entropy of Superconducting Vortices and the Quantum Nernst Effect

    No full text
    We show that the entropy per quantum vortex per layer in superconductors in external magnetic fields is bounded by the universal value kBln2, which explains puzzling results of recent experiments on the Nernst effect

    Fundamental Limits in Dissipative Processes during Computation

    No full text
    An increasing amount of electric energy is consumed by computers as they progress in function and capabilities. All of it is dissipated in heat during the computing and communicating operations and we reached the point that further developments are hindered by the unbearable amount of heat produced. In this paper, we briefly review the fundamental limits in energy dissipation, as imposed by the laws of physics, with specific reference to computing and memory storage activities. Different from previous approaches, we will focus on the sole dynamics of the binary switches, the building blocks of the logic gates and digital memories, without invoking any direct connection to the notion of information.Peer reviewe
    corecore