13 research outputs found

    Maternal metabolic status and in-vitro culture conditions during embryonic genome activation deregulate the expression of energy-related genes in the bovine 16-cells embryo.

    No full text
    The molecular consequences of the metabolic stress caused by milk production of dairy cows in the early embryo are largely unknown. The objective was to determine the impact of dam metabolic status or in vitro culture during embryonic genome activation (EGA) on the transcriptomic profiles of bovine 16-cell stage embryos. Two days after synchronized oestrus, in vitro produced 2- to 4-cell stage embryos were endoscopically transferred in pools of 50 into the oviduct ipsilateral to the corpus luteum of lactating (LACT, n = 3) or nonlactating (i.e. dried off immediately at calving; DRY, n = 3) dairy cows. On Day 4, the oviducts were flushed to recover the embryos. Pools of five Day-2 embryos (n = 5) and Day-4 16-cell stage embryos obtained in vitro (n = 3) or from LACT or DRY cows were subjected to RNAseq. Temporally differentially expressed genes (DEG; FDR<0.05) between Day-2 and Day-4 embryos were determined considering the differences between the three conditions under which EGA occurred. Also, DEG between Day-4 embryos derived from the three conditions were identified. Functional analysis of the temporal DEG demonstrated that genes involved in ribosome, translation and oxidative phosphorylation in the mitochondria were strongly more expressed in Day-4 than Day-2 embryos. Comparison of Day-4 embryos that underwent EGA in vitro, or in LACT or DRY cows, identified DEG enriching for mitochondrial respiration and protein translation, including the mTOR pathway. In conclusion, exposure of the embryo to an unfavourable maternal metabolic status during EGA influences its transcriptome and potentially the competence for pregnancy establishment

    Application of multi-omics data integration and machine learning approaches to identify epigenetic and transcriptomic differences between in vitro and in vivo produced bovine embryos.

    No full text
    Pregnancy rates for in vitro produced (IVP) embryos are usually lower than for embryos produced in vivo after ovarian superovulation (MOET). This is potentially due to alterations in their trophectoderm (TE), the outermost layer in physical contact with the maternal endometrium. The main objective was to apply a multi-omics data integration approach to identify both temporally differentially expressed and differentially methylated genes (DEG and DMG), between IVP and MOET embryos, that could impact TE function. To start, four and five published transcriptomic and epigenomic datasets, respectively, were processed for data integration. Second, DEG from day 7 to days 13 and 16 and DMG from day 7 to day 17 were determined in the TE from IVP vs. MOET embryos. Third, genes that were both DE and DM were subjected to hierarchical clustering and functional enrichment analysis. Finally, findings were validated through a machine learning approach with two additional datasets from day 15 embryos. There were 1535 DEG and 6360 DMG, with 490 overlapped genes, whose expression profiles at days 13 and 16 resulted in three main clusters. Cluster 1 (188) and Cluster 2 (191) genes were down-regulated at day 13 or day 16, respectively, while Cluster 3 genes (111) were up-regulated at both days, in IVP embryos compared to MOET embryos. The top enriched terms were the KEGG pathway "focal adhesion" in Cluster 1 (FDR = 0.003), and the cellular component: "extracellular exosome" in Cluster 2 (FDR<0.0001), also enriched in Cluster 1 (FDR = 0.04). According to the machine learning approach, genes in Cluster 1 showed a similar expression pattern between IVP and less developed (short) MOET conceptuses; and between MOET and DKK1-treated (advanced) IVP conceptuses. In conclusion, these results suggest that early conceptuses derived from IVP embryos exhibit epigenomic and transcriptomic changes that later affect its elongation and focal adhesion, impairing post-transfer survival

    Choline acts during preimplantation development of the bovine embryo to program postnatal growth and alter muscle DNA methylation

    No full text
    The preimplantation period of embryonic development can be a key window for programming of postnatal development because extensive epigenetic remodeling occurs during this time. It was hypothesized that modification of one-carbon metabolism of the bovine embryo by addition of the methyl-donor choline to culture medium would change postnatal phenotype through epigenetic modification. Embryos produced in vitro were cultured with 1.8 mM choline chloride or control medium. Blastocysts were transferred into females and pregnancy outcomes and postnatal phenotype of the resultant calves determined. Exposure of embryos to choline increased gestation length and calf birth weight. Calves derived from choline-treated embryos were also heavier at weaning and had increased ratio of body weight to hip height than control calves. Choline altered muscle DNA methylation of calves 4 months after birth. A total of 670 of the 8149 CpG examined were differentially methylated, with the predominant effect of choline being hypomethylation. Among the genes associated with differentially methylated CpG were ribosomal RNAs and genes in AMPK, mTOR, integrin, and BEX2 canonical pathways and cellular functions involved in growth and proliferation. Results demonstrate that provision of the methyl-donor choline to the preimplantation embryo can alter its developmental program to increase gestation length, birth weight, and weaning weight and cause postnatal changes in muscle DNA methylation including those associated with genes related to anabolic processes and cellular growth. The importance of the nutritional status of the embryo with respect to one-carbon metabolism for ensuring health and well-being after birth is emphasized by these observations

    Maternal metabolic status and in-vitro culture conditions during embryonic genome activation deregulate the expression of energy-related genes in the bovine 16-cells embryo

    No full text
    The molecular consequences of the metabolic stress caused by milk production of dairy cows in the early embryo are largely unknown. The objective was to determine the impact of dam metabolic status or in vitro culture during embryonic genome activation (EGA) on the transcriptomic profiles of bovine 16-cell stage embryos. Two days after synchronized oestrus, in vitro produced 2- to 4-cell stage embryos were endoscopically transferred in pools of 50 into the oviduct ipsilateral to the corpus luteum of lactating (LACT, n = 3) or nonlactating (i.e. dried off immediately at calving; DRY, n = 3) dairy cows. On Day 4, the oviducts were flushed to recover the embryos. Pools of five Day-2 embryos (n = 5) and Day-4 16-cell stage embryos obtained in vitro (n = 3) or from LACT or DRY cows were subjected to RNAseq. Temporally differentially expressed genes (DEG; FDR<0.05) between Day-2 and Day-4 embryos were determined considering the differences between the three conditions under which EGA occurred. Also, DEG between Day-4 embryos derived from the three conditions were identified. Functional analysis of the temporal DEG demonstrated that genes involved in ribosome, translation and oxidative phosphorylation in the mitochondria were strongly more expressed in Day-4 than Day-2 embryos. Comparison of Day-4 embryos that underwent EGA in vitro, or in LACT or DRY cows, identified DEG enriching for mitochondrial respiration and protein translation, including the mTOR pathway. In conclusion, exposure of the embryo to an unfavourable maternal metabolic status during EGA influences its transcriptome and potentially the competence for pregnancy establishment.Copyright: © 2023 Rabaglino et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
    corecore