2 research outputs found

    EXPERIMENTAL AND THEORETICAL ANALYSIS OF NA OXAZINOQUINOXALINE DERIVATIVE FOR CORROSION INHIBITION OF AISI 1018 STEEL

    No full text
    <div><p>The inhibitory ability of an oxazinoquinoxaline derivative (OAQX) against the corrosion of AISI 1018 mild steel induced by aqueous 0.6 mol L-1 NaCl solution is herein evaluated. Linear polarization resistance studies showed the inhibitory efficiency of OAQX varying from 62.75% to 75.93% with OAQX concentration ranged from 0.259 x 10-4 mol L-1 to 3.243 x 10-4 mol L-1. Aiming at to investigate the Tafel curves on the OAQX electrochemical behavior at saline (0.6 mol L-1 NaCl) aqueous media the linear Tafel segments of anodic and cathodic curves were extrapolated to the intersection point which afforded corrosion potential (Ecorr) and corrosion current density (icorr) data. By applying Tafel approach the efficiency of OAQX ranges from 55.30% to 87.60%. In both analysis Langmuir isotherm lead to optimized adsorption parameter. The adsorption mechanism of OAQX is proposed from FTIR experiments and quantum calculations. The theoretical employed method is hybrid B3LYP combined with 6-311++G(d,p). Theoretical results showed OAQX as a promising inhibitor that form a stable protective metal-ligand film on metal surfaces, and differs from several heterocyclic compounds due to its solubility in small amount of DMSO (0.627 x 10-4 mol L-1) which is resistant to a saline aqueous media (0.6 mol L-1 NaCl).</p></div

    Molecular Docking in silico Analysis of Brazilian Essential Oils Against Host Targets and SARS-CoV-2 Proteins

    No full text
    The inhibitory activity of thirty-one sesquiterpenes identified from Brazilian essential oils (Copaifera langsdorffii Desf., Croton cajucara Benth. and Siparuna guianensis Aublet.) were analyzed by in silico molecular docking. The compounds were characterized by gas chromatography-mass spectrometry (GC-MS) and gas chromatography with flame-ionization detection (GC-FID), and then, applied against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) proteins and human angiotensin-converting enzyme 2 (hACE2). Applying molecular docking and AutoDock Vina software, a total of 496 individual interactions were detected for sesquiterpenes along with SARS-CoV-2 proteins and hACE2 human angiotensin converting enzyme-2 protein. The findings showed considerable binding affinity of sesquiterpenes with the tested macromolecules. In that, β-selinene from C. langsdorffii displayed the best energy (−7.2 kcal mol-1) and showed strong interactions with the amino acids of the SARS-CoV-2 M-Pro protein. Spathulenol from C. cajucara strongly interacted with human ACE2, with a binding energy of −7.1 kcal mol-1. Meanwhile, γ-eudesmol from S. guianensis presented the lowest binding energy (−7.5 kcal mol-1) by interacting with the SARS-CoV-2 M-Pro complex. Additionally, measurements were performed aiming to evaluate the best sesquiterpenes binding interactions with the main proteins and its homologue files. According to results, these Brazilian essential oils hold antiviral potential being a rich source for further in vitro and in vivo studies focusing on herbal therapeutic adjuvants against SARS-CoV-2 infections.</div
    corecore