6 research outputs found

    “Pulsed Hypoxia” Gradually Reprograms Breast Cancer Fibroblasts into Pro-Tumorigenic Cells via Mesenchymal–Epithelial Transition

    No full text
    Hypoxia arises in most growing solid tumors and can lead to pleotropic effects that potentially increase tumor aggressiveness and resistance to therapy through regulation of the expression of genes associated with the epithelial–mesenchymal transition (EMT) and mesenchymal–epithelial transition (MET). The main goal of the current work was to obtain and investigate the intermediate phenotype of tumor cells undergoing the hypoxia-dependent transition from fibroblast to epithelial morphology. Primary breast cancer fibroblasts BrC4f, being cancer-associated fibroblasts, were subjected to one or two rounds of “pulsed hypoxia” (PH). PH induced transformation of fibroblast-shaped cells to semi-epithelial cells. Western blot analysis, fluorescent microscopy and flow cytometry of transformed cells demonstrated the decrease in the mesenchymal markers vimentin and N-cad and an increase in the epithelial marker E-cad. These cells kept mesenchymal markers αSMA and S100A4 and high ALDH activity. Real-time PCR data of the cells after one (BrC4f_Hyp1) and two (BrC4f_Hyp2) rounds of PH showed consistent up-regulation of TWIST1 gene as an early response and ZEB1/2 and SLUG transcriptional activity as a subsequent response. Reversion of BrC4f_Hyp2 cells to normoxia conditions converted them to epithelial-like cells (BrC4e) with decreased expression of EMT genes and up-regulation of MET-related OVOL2 and c-MYC genes. Transplantation of BrC4f and BrC4f_Hyp2 cells into SCID mice showed the acceleration of tumor growth up to 61.6% for BrC4f_Hyp2 cells. To summarize, rounds of PH imitate the MET process of tumorigenesis in which cancer-associated fibroblasts pass through intermediate stages and become more aggressive epithelial-like tumor cells

    NH<sub>3</sub>–NO Coadsorption System on Pt(111). II. Intermolecular Interaction

    No full text
    Coadsorption of ammonia and nitric oxide on the (111) surface of platinum causes the mutual stabilization of the two adsorbed species, arranged in an ordered 2 × 2 mixed layer. Furthermore, their interaction leads also to stable, isolated triangular units, which we observe on the surface after annealing to 345 K. Having provided in the preceding article (10.1021/jp406068y) a detailed structural description of the NH<sub>3</sub>–NO mixed layer, we focus here on the stabilizing intermolecular interactions. By combining scanning tunneling microscopy (STM) experiments and density functional theory (DFT) calculations, we identify the isolated triangular units as formed by one NH<sub>3</sub> and three NO molecules, and we characterize them in terms of structure, energetics, and charge rearrangement. Eventually, we investigate the nature of the chemical bond between the coadsorbed NH<sub>3</sub> and NO both in the mixed layer and in the isolated triangular units, pointing out the essential role of the surface mediation in inducing attractive dipole–dipole interactions and the presence of hydrogen bonds

    Trapping of Charged Gold Adatoms by Dimethyl Sulfoxide on a Gold Surface

    Get PDF
    10siWe report the formation of dimethyl sulfoxide (DMSO) molecular complexes on Au(111) enabled by native gold adatoms unusually linking the molecules via a bonding of ionic nature, yielding a mutual stabilization between molecules and adatom(s). DMSO is a widely used polar, aprotic solvent whose interaction with metal surfaces is not fully understood. By combining X-ray photoelectron spectroscopy, low temperature scanning tunneling microscopy, and density functional theory (DFT) calculations, we show that DMSO molecules form complexes made by up to four molecules arranged with adjacent oxygen terminations. DFT calculations reveal that most of the observed structures are accurately reproduced if, and only if, the negatively charged oxygen terminations are linked by one or two positively charged Au adatoms. A similar behavior was previously observed only in nonstoichiometric organic salt layers, fabricated using linkage alkali atoms and strongly electronegative molecules. These findings suggest a motif for anchoring organic adlayers of polar molecules on metal substrates and also provide nanoscale insight into the interaction of DMSO with gold.partially_openembargoed_20160616Feng, Zhijing; Velari, Simone; Cossaro, Albano; Castellarin-Cudia, Carla; Verdini, Alberto; Vesselli, Erik; Dri, Carlo; Peressi, Maria; De Vita, Alessandro; Comelli, GiovanniFeng, Zhijing; Velari, Simone; Cossaro, Albano; Castellarin Cudia, Carla; Verdini, Alberto; Vesselli, Erik; Dri, Carlo; Peressi, Maria; DE VITA, Alessandro; Comelli, Giovann

    Grand Challenges in global eye health: a global prioritisation process using Delphi method

    No full text
    Background: We undertook a Grand Challenges in Global Eye Health prioritisation exercise to identify the key issues that must be addressed to improve eye health in the context of an ageing population, to eliminate persistent inequities in health-care access, and to mitigate widespread resource limitations. Methods: Drawing on methods used in previous Grand Challenges studies, we used a multi-step recruitment strategy to assemble a diverse panel of individuals from a range of disciplines relevant to global eye health from all regions globally to participate in a three-round, online, Delphi-like, prioritisation process to nominate and rank challenges in global eye health. Through this process, we developed both global and regional priority lists. Findings: Between Sept 1 and Dec 12, 2019, 470 individuals complete round 1 of the process, of whom 336 completed all three rounds (round 2 between Feb 26 and March 18, 2020, and round 3 between April 2 and April 25, 2020) 156 (46%) of 336 were women, 180 (54%) were men. The proportion of participants who worked in each region ranged from 104 (31%) in sub-Saharan Africa to 21 (6%) in central Europe, eastern Europe, and in central Asia. Of 85 unique challenges identified after round 1, 16 challenges were prioritised at the global level; six focused on detection and treatment of conditions (cataract, refractive error, glaucoma, diabetic retinopathy, services for children and screening for early detection), two focused on addressing shortages in human resource capacity, five on other health service and policy factors (including strengthening policies, integration, health information systems, and budget allocation), and three on improving access to care and promoting equity. Interpretation: This list of Grand Challenges serves as a starting point for immediate action by funders to guide investment in research and innovation in eye health. It challenges researchers, clinicians, and policy makers to build collaborations to address specific challenges. Funding: The Queen Elizabeth Diamond Jubilee Trust, Moorfields Eye Charity, National Institute for Health Research Moorfields Biomedical Research Centre, Wellcome Trust, Sightsavers, The Fred Hollows Foundation, The Seva Foundation, British Council for the Prevention of Blindness, and Christian Blind Mission. Translations: For the French, Spanish, Chinese, Portuguese, Arabic and Persian translations of the abstract see Supplementary Materials section.</p
    corecore