3 research outputs found

    Discovery of 3,4-Dihydropyrimidin-2(1<i>H</i>)‑ones As a Novel Class of Potent and Selective A<sub>2B</sub> Adenosine Receptor Antagonists

    No full text
    We describe the discovery and optimization of 3,4-dihydropyrimidin-2­(1<i>H</i>)-ones as a novel family of (nonxanthine) A<sub>2B</sub> receptor antagonists that exhibit an unusually high selectivity profile. The Biginelli-based hit optimization process enabled a thoughtful exploration of the structure–activity and structure–selectivity relationships for this chemotype, enabling the identification of ligands that combine structural simplicity with excellent hA<sub>2B</sub> AdoR affinity and remarkable selectivity profiles

    Modulation of cAMP-Specific PDE without Emetogenic Activity: New Sulfide-Like PDE7 Inhibitors

    No full text
    A forward chemical genetic approach was followed to discover new targets and lead compounds for Parkinson’s disease (PD) treatment. By analysis of the cell protection produced by some small molecules, a diphenyl sulfide compound was revealed to be a new phosphodiesterase 7 (PDE7) inhibitor and identified as a new hit. This result allows us to confirm the utility of PDE7 inhibitors as a potential pharmacological treatment of PD. On the basis of these data, a diverse family of diphenyl sulfides has been developed and pharmacologically evaluated in the present work. Moreover, to gain insight into the safety of PDE7 inhibitors for human chronic treatment, we evaluated the new compounds in a surrogate emesis model, showing nonemetic effects

    Effect of Phosphodiesterase 7 (PDE7) Inhibitors in Experimental Autoimmune Encephalomyelitis Mice. Discovery of a New Chemically Diverse Family of Compounds

    No full text
    Phosphodiesterase (PDE) 7 is involved in proinflammatory processes, being widely expressed both on lymphocytes and on certain brain regions. Specific inhibitors of PDE7 have been recently reported as potential new drugs for the treatment of neurological disorders because of their ability to increase intracellular levels of cAMP and thus to modulate the inflammatory process, as a neuroprotective well-established strategy. Multiple sclerosis is an unmet disease in which pathologies on the immune system, T-cells, and specific neural cells are involved simultaneously. Therefore, PDE7 inhibitors able to interfere with all these targets may represent an innovative therapy for this pathology. Here, we report a new chemically diverse family of heterocyclic PDE7 inhibitors, discovered and optimized by using molecular modeling studies, able to increase cAMP levels in cells, decrease inflammatory activation on primary neural cultures, and also attenuate the clinical symptoms in the experimental autoimmune encephalomyelitis (EAE) mouse model. These results led us to propose the use of PDE7 inhibitors as innovative therapeutic agents for the treatment of multiple sclerosis
    corecore