3 research outputs found

    Bifunctional Zn<sup>II</sup>Ln<sup>III</sup> Dinuclear Complexes Combining Field Induced SMM Behavior and Luminescence: Enhanced NIR Lanthanide Emission by 9ā€‘Anthracene Carboxylate Bridging Ligands

    No full text
    There were new dinuclear Zn<sup>II</sup>ā€“Ln<sup>III</sup> complexes of general formulas [ZnĀ­(Ī¼-L)Ā­(Ī¼-OAc)Ā­LnĀ­(NO<sub>3</sub>)<sub>2</sub>] (Ln<sup>III</sup> = Tb (<b>1</b>), Dy (<b>2</b>), Er (<b>3</b>), and Yb (<b>4</b>)), [ZnĀ­(Ī¼-L)Ā­(Ī¼-NO<sub>3</sub>)Ā­ErĀ­(NO<sub>3</sub>)<sub>2</sub>] (<b>5</b>), [ZnĀ­(H<sub>2</sub>O)Ā­(Ī¼-L)Ā­NdĀ­(NO<sub>3</sub>)<sub>3</sub>]Ā·2CH<sub>3</sub>OH (<b>6</b>), [ZnĀ­(Ī¼-L)Ā­(Ī¼-9-An)Ā­LnĀ­(NO<sub>3</sub>)<sub>2</sub>]Ā·2CH<sub>3</sub>CN (Ln<sup>III</sup> = Tb (<b>7</b>), Dy (<b>8</b>), Er (<b>9</b>), YbĀ­(<b>10</b>)), [ZnĀ­(Ī¼-L)Ā­(Ī¼-9-An)Ā­YbĀ­(9-An)Ā­(NO<sub>3</sub>)<sub>3</sub>]Ā·3CH<sub>3</sub>CN (<b>11</b>), [ZnĀ­(Ī¼-L)Ā­(Ī¼-9-An)Ā­NdĀ­(9-An)Ā­(NO<sub>3</sub>)<sub>3</sub>]Ā·2CH<sub>3</sub>CNĀ·3H<sub>2</sub>O (<b>12</b>), and [ZnĀ­(Ī¼-L)Ā­(Ī¼-9-An)Ā­NdĀ­(CH<sub>3</sub>OH)<sub>2</sub>(NO<sub>3</sub>)]Ā­ClO<sub>4</sub>Ā·2CH<sub>3</sub>OH (<b>13</b>) prepared from the reaction of the compartmental ligand <i>N,N</i>ā€²<i>,N</i>ā€³-trimethyl-<i>N,N</i>ā€³-bisĀ­(2-hydroxy-3-methoxy-5-methylbenzyl)Ā­diethylenetriamine (H<sub>2</sub>L), with ZnX<sub>2</sub>Ā·<i>n</i>H<sub>2</sub>O (X = NO<sub>3</sub><sup>ā€“</sup> or OAc<sup>ā€“</sup>) salts, LnĀ­(NO<sub>3</sub>)<sub>3</sub>Ā·<i>n</i>H<sub>2</sub>O, and, in some instances, 9-anthracenecarboxylate anion (9-An). In all these complexes, the Zn<sup>II</sup> ions invariably occupy the internal N<sub>3</sub>O<sub>2</sub> site whereas the Ln<sup>III</sup> ions show preference for the O<sub>4</sub> external site, giving rise to a ZnĀ­(Ī¼-diphenoxo)Ā­Ln bridging fragment. Depending on the Zn<sup>II</sup> salt and solvent used in the reaction, a third bridge can connect the Zn<sup>II</sup> and Ln<sup>III</sup> metal ions, giving rise to triple-bridged diphenoxoacetate in complexes <b>1</b>ā€“<b>4</b>, diphenoxonitrate in complex <b>5</b>, and diphenoxoĀ­(9-anthracenecarboxylate) in complexes <b>8</b>ā€“<b>13</b>. Dy<sup>III</sup> and Er<sup>III</sup> complexes <b>2</b>, <b>8</b> and <b>3</b>, <b>5</b>, respectively, exhibit field induced single molecule magnet (SMM) behavior, with <i>U</i><sub>eff</sub> values ranging from 11.7 (3) to 41(2) K. Additionally, the solid-state photophysical properties of these complexes are presented showing that ligand L<sup>2ā€‘</sup> is able to sensitize Tb<sup>III</sup>- and Dy<sup>III</sup>-based luminescence in the visible region through an energy transfer process (antenna effect). The efficiency of this process is much lower when NIR emitters such as Er<sup>III</sup>, Nd<sup>III</sup>, and Yb<sup>III</sup> are considered. When the luminophore 9-anthracene carboxylate is incorporated into these complexes, the NIR luminescence is enhanced which proves the efficiency of this bridging ligand to act as antenna group. Complexes <b>2</b>, <b>3</b>, <b>5</b>, and <b>8</b> can be considered as dual materials as they combine SMM behavior and luminescent properties

    Family of Carboxylate- and Nitrate-diphenoxo Triply Bridged Dinuclear Ni<sup>II</sup>Ln<sup>III</sup> Complexes (Ln = Eu, Gd, Tb, Ho, Er, Y): Synthesis, Experimental and Theoretical Magneto-Structural Studies, and Single-Molecule Magnet Behavior

    No full text
    Seven acetate-diphenoxo triply bridged M<sup>II</sup>-Ln<sup>III</sup> complexes (M<sup>II</sup> = Ni<sup>II</sup> and Ln<sup>III</sup> = Gd, Tb, Ho, Er, and Y; M<sup>II</sup> = Zn<sup>II</sup> and Ln<sup>III</sup> = Ho<sup>III</sup> and Er<sup>III</sup>) of formula [MĀ­(Ī¼-L)Ā­(Ī¼-OAc)Ā­LnĀ­(NO<sub>3</sub>)<sub>2</sub>], one nitrate-diphenoxo triply bridged Ni<sup>II</sup>ā€“Tb<sup>III</sup> complex, [NiĀ­(Ī¼-L)Ā­(Ī¼-NO<sub>3</sub>)Ā­TbĀ­(NO<sub>3</sub>)<sub>2</sub>]Ā·2CH<sub>3</sub>OH, and two diphenoxo doubly bridged Ni<sup>II</sup>-Ln<sup>III</sup> complexes (Ln<sup>III</sup> = Eu, Gd) of formula [NiĀ­(H<sub>2</sub>O)Ā­(Ī¼-L)Ā­LnĀ­(NO<sub>3</sub>)<sub>3</sub>]Ā·2CH<sub>3</sub>OH have been prepared in one pot reaction from the compartmental ligand <i>N</i>,<i>N</i>ā€²,<i>N</i>ā€³-trimethyl-<i>N</i>,<i>N</i>ā€³-bisĀ­(2-hydroxy-3-methoxy-5-methylbenzyl)Ā­diethylenetriamine (H<sub>2</sub>L). Moreover, Ni<sup>II</sup>-Ln<sup>III</sup> complexes bearing benzoate or 9-anthracenecarboxylate bridging groups of formula [NiĀ­(Ī¼-L)Ā­(Ī¼-BzO)Ā­DyĀ­(NO<sub>3</sub>)<sub>2</sub>] and [NiĀ­(Ī¼-L)Ā­(Ī¼-9-An)Ā­DyĀ­(9-An)Ā­(NO<sub>3</sub>)<sub>2</sub>]Ā·3CH<sub>3</sub>CN have also been successfully synthesized. In acetate-diphenoxo triply bridged complexes, the acetate bridging group forces the structure to be folded with an average hinge angle in the MĀ­(Ī¼-O<sub>2</sub>)Ā­Ln bridging fragment of āˆ¼22Ā°, whereas nitrate-diphenoxo doubly bridged complexes and diphenoxo-doubly bridged complexes exhibit more planar structures with hinge angles of āˆ¼13Ā° and āˆ¼2Ā°, respectively. All Ni<sup>II</sup>-Ln<sup>III</sup> complexes exhibit ferromagnetic interactions between Ni<sup>II</sup> and Ln<sup>III</sup> ions and, in the case of the Gd<sup>III</sup> complexes, the <i>J</i><sub>NiGd</sub> coupling increases weakly but significantly with the planarity of the Mā€“(O)<sub>2</sub>ā€“Gd bridging fragment and with the increase of the Niā€“Oā€“Gd angle. Density functional theory (DFT) theoretical calculations on the Ni<sup>II</sup>Gd<sup>III</sup> complexes and model compounds support these magneto-structural correlations as well as the experimental <i>J</i><sub>NiGd</sub> values, which were found to be āˆ¼1.38 and āˆ¼2.1 cm<sup>ā€“1</sup> for the folded [NiĀ­(Ī¼-L)Ā­(Ī¼-OAc)Ā­GdĀ­(NO<sub>3</sub>)<sub>2</sub>] and planar [NiĀ­(H<sub>2</sub>O)Ā­(Ī¼-L)Ā­GdĀ­(NO<sub>3</sub>)<sub>3</sub>]Ā·2CH<sub>3</sub>OH complexes, respectively. The Ni<sup>II</sup>Dy<sup>III</sup> complexes exhibit slow relaxation of the magnetization with Ī”/<i>k</i><sub>B</sub> energy barriers under 1000 Oe applied magnetic fields of 9.2 and 10.1 K for [NiĀ­(Ī¼-L)Ā­(Ī¼-BzO)Ā­DyĀ­(NO<sub>3</sub>)<sub>2</sub>] and [NiĀ­(Ī¼-L)Ā­(Ī¼-9-An)Ā­DyĀ­(9-An)Ā­(NO<sub>3</sub>)<sub>2</sub>]Ā·3CH<sub>3</sub>CN, respectively

    Family of Carboxylate- and Nitrate-diphenoxo Triply Bridged Dinuclear Ni<sup>II</sup>Ln<sup>III</sup> Complexes (Ln = Eu, Gd, Tb, Ho, Er, Y): Synthesis, Experimental and Theoretical Magneto-Structural Studies, and Single-Molecule Magnet Behavior

    No full text
    Seven acetate-diphenoxo triply bridged M<sup>II</sup>-Ln<sup>III</sup> complexes (M<sup>II</sup> = Ni<sup>II</sup> and Ln<sup>III</sup> = Gd, Tb, Ho, Er, and Y; M<sup>II</sup> = Zn<sup>II</sup> and Ln<sup>III</sup> = Ho<sup>III</sup> and Er<sup>III</sup>) of formula [MĀ­(Ī¼-L)Ā­(Ī¼-OAc)Ā­LnĀ­(NO<sub>3</sub>)<sub>2</sub>], one nitrate-diphenoxo triply bridged Ni<sup>II</sup>ā€“Tb<sup>III</sup> complex, [NiĀ­(Ī¼-L)Ā­(Ī¼-NO<sub>3</sub>)Ā­TbĀ­(NO<sub>3</sub>)<sub>2</sub>]Ā·2CH<sub>3</sub>OH, and two diphenoxo doubly bridged Ni<sup>II</sup>-Ln<sup>III</sup> complexes (Ln<sup>III</sup> = Eu, Gd) of formula [NiĀ­(H<sub>2</sub>O)Ā­(Ī¼-L)Ā­LnĀ­(NO<sub>3</sub>)<sub>3</sub>]Ā·2CH<sub>3</sub>OH have been prepared in one pot reaction from the compartmental ligand <i>N</i>,<i>N</i>ā€²,<i>N</i>ā€³-trimethyl-<i>N</i>,<i>N</i>ā€³-bisĀ­(2-hydroxy-3-methoxy-5-methylbenzyl)Ā­diethylenetriamine (H<sub>2</sub>L). Moreover, Ni<sup>II</sup>-Ln<sup>III</sup> complexes bearing benzoate or 9-anthracenecarboxylate bridging groups of formula [NiĀ­(Ī¼-L)Ā­(Ī¼-BzO)Ā­DyĀ­(NO<sub>3</sub>)<sub>2</sub>] and [NiĀ­(Ī¼-L)Ā­(Ī¼-9-An)Ā­DyĀ­(9-An)Ā­(NO<sub>3</sub>)<sub>2</sub>]Ā·3CH<sub>3</sub>CN have also been successfully synthesized. In acetate-diphenoxo triply bridged complexes, the acetate bridging group forces the structure to be folded with an average hinge angle in the MĀ­(Ī¼-O<sub>2</sub>)Ā­Ln bridging fragment of āˆ¼22Ā°, whereas nitrate-diphenoxo doubly bridged complexes and diphenoxo-doubly bridged complexes exhibit more planar structures with hinge angles of āˆ¼13Ā° and āˆ¼2Ā°, respectively. All Ni<sup>II</sup>-Ln<sup>III</sup> complexes exhibit ferromagnetic interactions between Ni<sup>II</sup> and Ln<sup>III</sup> ions and, in the case of the Gd<sup>III</sup> complexes, the <i>J</i><sub>NiGd</sub> coupling increases weakly but significantly with the planarity of the Mā€“(O)<sub>2</sub>ā€“Gd bridging fragment and with the increase of the Niā€“Oā€“Gd angle. Density functional theory (DFT) theoretical calculations on the Ni<sup>II</sup>Gd<sup>III</sup> complexes and model compounds support these magneto-structural correlations as well as the experimental <i>J</i><sub>NiGd</sub> values, which were found to be āˆ¼1.38 and āˆ¼2.1 cm<sup>ā€“1</sup> for the folded [NiĀ­(Ī¼-L)Ā­(Ī¼-OAc)Ā­GdĀ­(NO<sub>3</sub>)<sub>2</sub>] and planar [NiĀ­(H<sub>2</sub>O)Ā­(Ī¼-L)Ā­GdĀ­(NO<sub>3</sub>)<sub>3</sub>]Ā·2CH<sub>3</sub>OH complexes, respectively. The Ni<sup>II</sup>Dy<sup>III</sup> complexes exhibit slow relaxation of the magnetization with Ī”/<i>k</i><sub>B</sub> energy barriers under 1000 Oe applied magnetic fields of 9.2 and 10.1 K for [NiĀ­(Ī¼-L)Ā­(Ī¼-BzO)Ā­DyĀ­(NO<sub>3</sub>)<sub>2</sub>] and [NiĀ­(Ī¼-L)Ā­(Ī¼-9-An)Ā­DyĀ­(9-An)Ā­(NO<sub>3</sub>)<sub>2</sub>]Ā·3CH<sub>3</sub>CN, respectively
    corecore