137 research outputs found

    Cortical circuits for integration of self-motion and visual-motion signals.

    Get PDF
    The cerebral cortex contains cells which respond to movement of the head, and these cells are thought to be involved in the perception of self-motion. In particular, studies in the primary visual cortex of mice show that both running speed and passive whole-body rotation modulates neuronal activity, and modern genetically targeted viral tracing approaches have begun to identify previously unknown circuits that underlie these responses. Here we review recent experimental findings and provide a road map for future work in mice to elucidate the functional architecture and emergent properties of a cortical network potentially involved in the generation of egocentric-based visual representations for navigation

    Probabilistic Tensor Decomposition of Neural Population Spiking Activity

    Get PDF
    The firing of neural populations is coordinated across cells, in time, and across experimental conditions or repeated experimental trials, and so a full understanding of the computational significance of neural responses must be based on a separation of these different contributions to structured activity. Tensor decomposition is an approach to untangling the influence of multiple factors in data that is common in many fields. However, despite some recent interest in neuroscience, wider applicability of the approach is hampered by the lack of a full probabilistic treatment allowing principled inference of a decomposition from non-Gaussian spike-count data. Here, we extend the Polya-Gamma (PG) augmentation, previously used in sampling-based Bayesian inference, to implement scalable variational inference in non-conjugate spike-count models. Using this new approach, we develop techniques related to automatic relevance determination to infer the most appropriate tensor rank, as well as to incorporate priors based on known brain anatomy such as the segregation of cell response properties by brain area. We apply the model to neural recordings taken under conditions of visual-vestibular sensory integration, revealing how the encoding of self- and visual-motion signals is modulated by the sensory information available to the animal

    Long-term potentiation of synaptic transmission in the avian hippocampus

    Get PDF
    The avian hippocampus plays a pivotal role in memory required for spatial navigation and food storing. Here we have examined synaptic transmission and plasticity within the hippocampal formation of the domestic chicken using an in vitro slice preparation. With the use of sharp microelectrodes we have shown that excitatory synaptic inputs in this structure are glutamatergic and activate both NMDA-and AMPA-type receptors on the postsynaptic membrane. In response to tetanic stimulation, the EPSP displayed a robust long-term potentiation (LTP) lasting >1 hr. This LTP was unaffected by blockade of NMDA receptors or chelation of postsynaptic calcium. Application of forskolin increased the EPSP and reduced paired-pulse facilitation: (PPF), indicating an increase in release probability. In contrast, LTP was not associated with a change in the PPF ratio. Induction of LTP did not occlude the effects of forskolin. Thus, in contrast to NMDA receptor-independent LTP in the mammalian brain, LTP in the chicken hippocampus is not attributable to a change in the probability of transmitter release and does not require activation of adenylyl cyclase, These findings indicate that a novel form of synaptic plasticity might underlie learning in the avian hippocampus

    Visualizing anatomically registered data with Brainrender

    Get PDF
    Three-dimensional (3D) digital brain atlases and high-throughput brain wide imaging techniques generate large multidimensional datasets that can be registered to a common reference frame. Generating insights from such datasets depends critically on visualization and interactive data exploration, but this a challenging task. Currently available software is dedicated to single atlases, model species or data types, and generating 3D renderings that merge anatomically registered data from diverse sources requires extensive development and programming skills. Here, we present brainrender: an open-source Python package for interactive visualization of multidimensional datasets registered to brain atlases. Brainrender facilitates the creation of complex renderings with different data types in the same visualization and enables seamless use of different atlas sources. High-quality visualizations can be used interactively and exported as high-resolution figures and animated videos. By facilitating the visualization of anatomically registered data, brainrender should accelerate the analysis, interpretation, and dissemination of brain-wide multidimensional data

    Analysis of segmentation ontology reveals the similarities and differences in connectivity onto L2/3 neurons in mouse V1

    Get PDF
    Quantitatively comparing brain-wide connectivity of different types of neuron is of vital importance in understanding the function of the mammalian cortex. Here we have designed an analytical approach to examine and compare datasets from hierarchical segmentation ontologies, and applied it to long-range presynaptic connectivity onto excitatory and inhibitory neurons, mainly located in layer 2/3 (L2/3), of mouse primary visual cortex (V1). We find that the origins of long-range connections onto these two general cell classes-as well as their proportions-are quite similar, in contrast to the inputs on to a cell type in L6. These anatomical data suggest that distal inputs received by the general excitatory and inhibitory classes of neuron in L2/3 overlap considerably

    The synaptic representation of sound source location in primary auditory cortex

    Get PDF
    Akey function of the auditory system is to provide reliable information about the location of sound sources. Here, we describe how sound location is represented by synaptic input arriving onto pyramidal cells within auditory cortex by combining free-field acoustic stimulation in the frontal azimuthal plane with in vivo whole-cell recordings. We found that subthreshold activity was panoramic in that EPSPs could be evoked from all locations in all cells. Regardless of the sound location that evoked the largest EPSP, we observed a slowing in the EPSP slope along the contralateral–ipsilateral plane that was reflected in a temporal sequence of peak EPSP times. Contralateral sounds evoked EPSPs with earlier peak times and consequently generated action potential firing with shorter latencies than ipsilateral sounds. Thus, whereas spiking probability reflected the region of space evoking the largest EPSP, across the population, synaptic inputs enforced a gradient of spike latency and precision along the horizontal axis. Therefore, within auditory cortex and regardless of preferred location, the time window of synaptic integration reflects sound source location and ensures that spatial acoustic information is represented by relative timings of pyramidal cell output

    Multisensory coding of angular head velocity in the retrosplenial cortex

    Get PDF
    To successfully navigate the environment, animals depend on their ability to continuously track their heading direction and speed. Neurons that encode angular head velocity (AHV) are fundamental to this process, yet the contribution of various motion signals to AHV coding in the cortex remains elusive. By performing chronic single-unit recordings in the retrosplenial cortex (RSP) of the mouse and tracking the activity of individual AHV cells between freely moving and head-restrained conditions, we find that vestibular inputs dominate AHV signaling. Moreover, the addition of visual inputs onto these neurons increases the gain and signal-to-noise ratio of their tuning during active exploration. Psychophysical experiments and neural decoding further reveal that vestibular-visual integration increases the perceptual accuracy of angular self-motion and the fidelity of its representation by RSP ensembles. We conclude that while cortical AHV coding requires vestibular input, where possible, it also uses vision to optimize heading estimation during navigation

    Quantitative association of anatomical and functional classes of olfactory bulb neurons.

    Get PDF
    Juxtaglomerular cells (JGC) of the olfactory bulb (OB) glomerular layer (GL) play a fundamental role in olfactory information processing. Their variability in morphology, physiology, and connectivity suggests distinct functions. The quantitative understanding of population-wise morphological and physiological properties and a comprehensive classification based on quantitative parameters, however, is still lacking, impeding the analysis of microcircuits. Here, we provide multivariate clustering of 95 in vitro sampled cells from the GL of the mouse (male or female C57BL/6) OB and perform detailed morphological and physiological characterization for the seven computed JGC types. Using a classifier based on a sub-selection of parameters, we identified the neuron types in paired recordings to characterize their functional connectivity. We found that 4 of the 7 clusters comply with prevailing concepts of GL cell types, while the other 3 represent own distinct entities. We have labelled these entities horizontal superficial tufted cell (hSTC), vertical superficial tufted cell (vSTC) and microglomerular cell (MGC): The hSTC is a tufted cell with a lateral dendrite that much like mitral (MC) and tufted cells (TC) receives excitatory inputs from the external tufted cell (ETC) but likewise serves as an excitatory element for glomerular interneurons. The vSTC on the other contrary represents a tufted cell type with vertically projecting basal dendrites. We further define the MGC, characterized by a small dendritic tree and plateau action potentials. In addition to olfactory nerve (ON)-driven and ET-driven interneurons, these MGCs represent a third functionally distinct type, the hSTC-driven interneurons. The presented correlative analysis helps to bridge the gap between branching patterns and cellular functional properties, permitting the integration of results from in vivo recordings, advanced morphological tools, and connectomics. SIGNIFICANCE STATEMENT: The variance of neuron properties is a feature across mammalian cerebral circuits, contributing to signal processing and adding computational robustness to the networks. It is particularly noticeable in the glomerular layer of the olfactory bulb, the first site of olfactory information processing. We provide the first unbiased population-wise multivariate analysis to correlate morphological and physiological parameters of juxtaglomerular cells. We identify seven cell types, including four previously described neuron types, and identify further three distinct classes. The presented correlative analysis of morphological and physiological parameters gives an opportunity to predict morphological classes from physiological measurements or the functional properties of neurons from morphology and opens the way to integrate results from in vivo recordings, advanced morphological tools and connectomics

    Accurate determination of marker location within whole-brain microscopy images

    Get PDF
    High-resolution whole-brain microscopy provides a means for post hoc determination of the location of implanted devices and labelled cell populations that are necessary to interpret in vivo experiments designed to understand brain function. Here we have developed two plugins (brainreg and brainreg-segment) for the Python-based image viewer napari, to accurately map any object in a common coordinate space. We analysed the position of dye-labelled electrode tracks and two-photon imaged cell populations expressing fluorescent proteins. The precise location of probes and cells were physiologically interrogated and revealed accurate segmentation with near-cellular resolution
    • …
    corecore