63 research outputs found

    Gold nanoparticles supported on magnesium oxide for CO oxidation

    Get PDF
    Au was loaded (1 wt%) on a commercial MgO support by three different methods: double impregnation, liquid-phase reductive deposition and ultrasonication. Samples were characterised by adsorption of N2 at -96°C, temperature-programmed reduction, high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction. Upon loading with Au, MgO changed into Mg(OH)2 (the hydroxide was most likely formed by reaction with water, in which the gold precursor was dissolved). The size range for gold nanoparticles was 2-12 nm for the DIM method and 3-15 nm for LPRD and US. The average size of gold particles was 5.4 nm for DIM and larger than 6.5 for the other methods. CO oxidation was used as a test reaction to compare the catalytic activity. The best results were obtained with the DIM method, followed by LPRD and US. This can be explained in terms of the nanoparticle size, well known to determine the catalytic activity of gold catalysts

    Catalysis by Metals: Contribution of Electrochemistry

    No full text

    Combinatorial optimization and synthesis of multiple promoted MoVNbTe catalysts for oxidation of propane to acrylic acid

    No full text
    New MoVTeNb multi-component catalysts (so-called M1 phase) were designed and tested using combinatorial and high-throughput methods. An international team of academic institutes and industrial partners has cooperated to understand the chemistry occurring during the hydrothermal synthesis and crystallization of the M1 phase of the MoVTeNb mixed oxide. With this information, the optimization of this catalyst system could be targeted with the aim of improving catalyst performance for short chain alkane – ethane and propane - oxidation reactions. Beside the elements responsible for the formation of the M1 phase (Mo, V, Te, and Nb) and promoters found to be advantageous in our previous work (Mn, Ni, W and citric acid), the following components were added to the synthesis mixture: Ce, Cu, Co, Cr and ethylene glycol. Contrary to the previous approach in this study, the V/Mo, Te/Mo and Nb/Mo ratios were kept constant. Consequently, the experimental space had nine variables. The discrete levels of variables are established in such a way that the number of the potential experimental points in the multi-dimensional experimental space was in the range of 200 000. Five new generations were designed using an optimization platform consisting of holographic optimization algorithm and artificial neural networks. Altogether 250 catalysts were prepared and tested. A complex objective function was created consisting of two independent catalytic performance characteristics – conversion and product selectivity – as well as the expected production costs and prices of the target product acrylic acid (AA) and export steam. The AA production costs were estimated assuming a recycle scheme for such a future AA plant with standard downstream equipment. The best catalysts in the group of catalysts with low vanadium content gave acrylic acid yields of 58% in the high throughput tests after five generations. On the bases of holographic maps, correlations between the composition of the synthesis mixtures and the yields of AA were visualized allowing to see the cross effect between components. Mn and Co had a positive effect, while Cu and Ce resulted in negative effect on the yield of AA. The analysis of the correlation between conversions vs. product yields allowed figuring out the main reaction routes leading to acrylic acid and CO2 in a consecutive reaction scheme. Following this successful high throughput development, the hydrothermal method using the newly identified synthesis aids was further optimized and successfully scaled up to 40 l autoclaves using the cheapest available chemicals, the oxides. This now renders possible the large-scale production of that complex MoVNbTe mixed oxide catalyst
    corecore