3 research outputs found

    Cerebral vasculitis and intracranial multiple aneurysms in a child with Lyme neuroborreliosis

    Get PDF
    Introduction. Lyme borreliosis is a multisystem tick-borne disease caused by Borrelia burgdorferi. Neurological manifestations are reported in up to 15 % of adult patients with Lyme disease, while the frequency among children is higher. The most common manifestations are painful radiculopathy, facial nerve paresis and lymphocytic meningitis. Epileptic seizures and cerebral vasculitis with stroke or aneurysms are very rare complications. Case presentation. We describe a paediatric patient with sensorineural auditory dysfunction, headache, fatigue and epileptic seizures as sequelae of meningoencephalitis/Lyme neuroborreliosis (LNB) caused by B. burgdorferi. Brain magnetic resonance imaging revealed widespread enhancement of the leptomeninges, cranial nerves and artery walls compatible with vasculitis and disturbances in cerebrospinal fluid (CSF) circulation. The patient was treated with ceftriaxone for 2 weeks. Two years later, the patient had an ischemic stroke. Brain magnetic resonance angiography revealed multiple aneurysms, which were not present previously. The largest aneurysm was operated rapidly. The patient was treated with another course of intravenous ceftriaxone for 4 weeks and pulse therapy with corticosteroids. He recovered well. Conclusion. This unique case demonstrates complications of LNB that can result in serious morbidity or even mortality. Lumbar puncture and analysis should be considered for paediatric patients with epileptic seizures or cerebrovascular events living in a Lyme borreliosis endemic area</p

    Quantitative positron emission tomography-guided magnetic resonance imaging postprocessing in magnetic resonance imaging-negative epilepsies

    Get PDF
    Objective: Detection of focal cortical dysplasia (FCD) is of paramount importance in epilepsy presurgical evaluation. Our study aims at utilizing quantitative positron emission tomography (QPET) analysis to complement magnetic resonance imaging (MRI) postprocessing by a morphometric analysis program (MAP) to facilitate automated identification of subtle FCD. Methods: We retrospectively included a consecutive cohort of surgical patients who had a negative preoperative MRI by radiology report. MAP was performed on T1-weighted volumetric sequence and QPET was performed on PET/computed tomographic data, both with comparison to scanner-specific normal databases. Concordance between MAP and QPET was assessed at a lobar level, and the significance of concordant QPET-MAP(+) abnormalities was confirmed by postresective seizure outcome and histopathology. QPET thresholds of standard deviations (SDs) of -1, -2, -3, and -4 were evaluated to identify the optimal threshold for QPET-MAP analysis. Results: A total of 104 patients were included. When QPET thresholds of SD = -1, -2, and -3 were used, complete resection of the QPET-MAP(+) region was significantly associated with seizure-free outcome when compared with the partial resection group (P = 0.023, P <0.001, P = 0.006) or the no resection group (P = 0.002, P <0.001, P = 0.001). The SD threshold of -2 showed the best combination of positive rate (55%), sensitivity (0.68), specificity (0.88), positive predictive value (0.88), and negative predictive value (0.69). Surgical pathology of the resected QPET-MAP(+) areas revealed mainly FCD type L Multiple QPETMAP(+) regions were present in 12% of the patients at SD = -2. Significance: Our study demonstrates a practical and effective approach to combine quantitative analyses of functional (QPET) and structural (MAP) imaging data to improve identification of subtle epileptic abnormalities. This approach can he readily adopted by epilepsy centers to improve postresective seizure outcomes for patients without apparent lesions on MRI.Peer reviewe
    corecore