23 research outputs found

    The LIKE system, a novel protein expression toolbox for Bacillus subtilis based on the liaI promoter

    Get PDF
    Background: Bacillus subtilis is a very important Gram-positive model organism of high biotechnological relevance, which is widely used as a host for the production of both secreted and cytoplasmic proteins. We developed a novel and efficient expression system, based on the liaI promoter (P-liaI) from B. subtilis, which is under control of the LiaRS antibiotic-inducible two-component system. In the absence of a stimulus, this promoter is kept tightly inactive. Upon induction by cell wall antibiotics, it shows an over 100-fold increase in activity within 10 min. Results: Based on these traits of P-liaI, we developed a novel LiaRS-controlled gene expression system for B. subtilis (the "LIKE" system). Two expression vectors, the integrative pLIKE-int and the replicative pLIKE-rep, were constructed. To enhance the performance of the P-liaI-derived system, site-directed mutagenesis was employed to optimize the ribosome binding site and alter its spacing to the initiation codon used for the translational fusion. The impact of these genetic modifications on protein production yield was measured using GFP as a model protein. Moreover, a number of tailored B. subtilis expression strains containing different markerless chromosomal deletions of the liaIH region were constructed to circumvent undesired protein production, enhance the positive autoregulation of the LiaRS system and thereby increase target gene expression strength from the P-liaI promoter. Conclusions: The LIKE protein expression system is a novel protein expression system, which offers a number of advantages over existing systems. Its major advantages are (i) a tightly switched-off promoter during exponential growth in the absence of a stimulus, (ii) a concentration-dependent activation of P-liaI in the presence of suitable inducers, (iii) a very fast but transient response with a very high dynamic range of over 100-fold (up to 1,000-fold) induction, (iv) a choice from a range of well-defined, commercially available, and affordable inducers and (v) the convenient conversion of LIKE-derived inducible expression strains into strong constitutive protein production factories

    Components of the ribosome biogenesis pathway underlie establishment of telomere length set point in Arabidopsis

    Get PDF
    Telomeres cap the physical ends of eukaryotic chromosomes to ensure complete DNA replication and genome stability. Heritable natural variation in telomere length exists in yeast, mice, plants and humans at birth; however, major effect loci underlying such polymorphism remain elusive. Here, we employ quantitative trait locus (QTL) mapping and transgenic manipulations to identify genes controlling telomere length set point in a multi-parent Arabidopsis thaliana mapping population. We detect several QTL explaining 63.7% of the total telomere length variation in the Arabidopsis MAGIC population. Loss-of-function mutants of the NOP2A candidate gene located inside the largest effect QTL and of two other ribosomal genes RPL5A and RPL5B establish a shorter telomere length set point than wild type. These findings indicate that evolutionarily conserved components of ribosome biogenesis and cell proliferation pathways promote telomere elongation

    Non-Radioactive TRF Assay Modifications to Improve Telomeric DNA Detection Efficiency in Plants

    No full text
    The length of telomeric DNA is often considered a cellular biomarker of aging and general health status. Several telomere length measuring assays have been developed, of which the most common is the telomere restriction fragment (TRF) analysis, which typically involves the use of radioactively labeled oligonucleotide probes. While highly effective, this method potentially poses substantial health concerns and generates radioactive waste. Digoxigenin (DIG) alternatives to radioactive probes have been developed and used successfully in a number of assays. Here, we optimize the DIG protocol to measure telomere length in the model plant Arabidopsis thaliana and present evidence that this approach can be used successfully to efficiently and accurately measure telomere length in plants. Specifically, hybridization temperature of 42 °C instead of the typical 55 °C appears to generate stronger signals. In addition, DIG incorporation at 5′-end instead of 3′-end of the labeled oligonucleotide greatly enhances signal. We conclude that non-radioactive TRF assays can be as efficient as radioactive methods in detecting and measuring telomere length in plants, making this assay suitable for medical and research laboratories unable to utilize radioactivity due to hazardous waste disposal and safety concerns

    Expression of

    No full text
    Phytic acid is the main storage form of organic phosphorus. Due to its structural features, phosphorus in phytate is inaccessible for assimilation by animals. Moreover, remaining inaccessible reservoir of phosphorus for animal nutrition, phytic acid is capable of forming insoluble complex salts, which lead to soil and water pollution. Мicrobial enzymes - phytases, capable of decomposing phytic acid to organic phosphorus are being used as feed additives in animal nutrition to solve this problem. Thus, search and development of technologies for the production of enzymes on an industrial scale are the most urgent. Methylotrophic yeast P. pastoris are widely used in biotechnology, as an efficient system for the recombinant proteins expression. They have many advantages, including rapid growth on inexpensive media, a wide range of molecular tools for genetic manipulation in optimizing production processes, they are safe for humans and animals, carry-out many post-translational modifications and produce recombinant proteins intracellularly or extracellularly within a short period of time. It was found that the recombinant P. pastoris strains pPINK-LC-α-MF -phyC, pPINK-HC-α-amyl -phyC, pPINK-LC-α-amyl -phyC, pPINK-HC-α-MF -phyC are able to produce and to secrete B. ginsengihumi bacterial phytase M 2.11 phyC. The maximum activity was observed in the pPINK-LC-α-MF strain – 2.6 (U / mg). Recombinant B. ginsengihumi M 2.11 phytases exhibited high activity in a wide pH range from 2.5 to 9.0. The MF-phyC-HC construction is pH stable. The temperature optimum of all recombinant phytases corresponds to 37 ° C; recombinant phytases retain their activity in the range from -80 to 90C

    An Improved Gene Expression System to Generate Transgenic Arabidopsis Thaliana Plants Harboring a Bacillus Ginsengihumi Phytase Gene

    No full text
    We constructed a new vector system for heterologous gene expression in Arabidopsis thaliana. The construct contains a codon-optimized sequence encoding Bacillus ginsengihumi phytase behind an inducible plant-specific promoter for expression in root epithelial cells. The new vector introduced into the plant A. thaliana by Agrobacterium mediated transformation. We obtained several generations of transgenic A. thaliana plants with integrated Bacillus ginsengihumi phytase gene, as well as with an empty vector as a negative control. We tested several transgenic plants harboring the phyCg construct under the control of phosphate-starvation inducible Pht1;2 promoter and show that the phyCg gene is expressed at the mRNA level. Further characterization of these lines of plants will help us to design an improved transgenic strategy for the development of a root-specific heterologous system for the expression of bacterial phytases in plants

    The LIKE system, a novel protein expression toolbox for <it>Bacillus subtilis</it> based on the <it>liaI</it> promoter

    No full text
    Abstract Background Bacillus subtilis is a very important Gram-positive model organism of high biotechnological relevance, which is widely used as a host for the production of both secreted and cytoplasmic proteins. We developed a novel and efficient expression system, based on the liaI promoter (PliaI) from B. subtilis, which is under control of the LiaRS antibiotic-inducible two-component system. In the absence of a stimulus, this promoter is kept tightly inactive. Upon induction by cell wall antibiotics, it shows an over 100-fold increase in activity within 10 min. Results Based on these traits of PliaI, we developed a novel LiaRS-controlled gene expression system for B. subtilis (the “LIKE" system). Two expression vectors, the integrative pLIKE-int and the replicative pLIKE-rep, were constructed. To enhance the performance of the PliaI-derived system, site-directed mutagenesis was employed to optimize the ribosome binding site and alter its spacing to the initiation codon used for the translational fusion. The impact of these genetic modifications on protein production yield was measured using GFP as a model protein. Moreover, a number of tailored B. subtilis expression strains containing different markerless chromosomal deletions of the liaIH region were constructed to circumvent undesired protein production, enhance the positive autoregulation of the LiaRS system and thereby increase target gene expression strength from the PliaI promoter. Conclusions The LIKE protein expression system is a novel protein expression system, which offers a number of advantages over existing systems. Its major advantages are (i) a tightly switched-off promoter during exponential growth in the absence of a stimulus, (ii) a concentration-dependent activation of PliaI in the presence of suitable inducers, (iii) a very fast but transient response with a very high dynamic range of over 100-fold (up to 1,000-fold) induction, (iv) a choice from a range of well-defined, commercially available, and affordable inducers and (v) the convenient conversion of LIKE-derived inducible expression strains into strong constitutive protein production factories.</p

    Expression Of \u3cem\u3ePantoea Agglomerans\u3c/em\u3e Phytase From A Strong Constitutive Promoter In \u3cem\u3eArabidopsis Thaliana\u3c/em\u3e Plants

    No full text
    In this study we report construction of an efficient gene expression system in plants and subsequent characterization of transgenic Arabidopsis thaliana expressing a bacterial paPhyC phytase gene from Pantoea sp. Phytase gene expression is controlled by a strong 35S constitutive promoter from cauliflower mosaic virus. All identified transgenic plants had multiple T-DNA insertions in the genome. Expression of paPhyC phytase mRNA in plant tissue was confirmed by RT-PCR in the second generation of transgenic plants, and phytase protein expression was confirmed by Western blotting. Our data indicate that bacterial phytase expression in plants can be an efficient way to potentially increase crop performance in conditions of inorganic phosphorus deficiency in the soil

    Heterologous Expression of Secreted Bacterial BPP and HAP Phytases in Plants Stimulates Arabidopsis thaliana Growth on Phytate

    Get PDF
    Phytases are specialized phosphatases capable of releasing inorganic phosphate from myo-inositol hexakisphosphate (phytate), which is highly abundant in many soils. As inorganic phosphorus reserves decrease over time in many agricultural soils, genetic manipulation of plants to enable secretion of potent phytases into the rhizosphere has been proposed as a promising approach to improve plant phosphorus nutrition. Several families of biotechnologically important phytases have been discovered and characterized, but little data are available on which phytase families can offer the most benefits toward improving plant phosphorus intake. We have developed transgenic Arabidopsis thaliana plants expressing bacterial phytases PaPhyC (HAP family of phytases) and 168phyA (BPP family) under the control of root-specific inducible promoter Pht1;2. The effects of each phytase expression on growth, morphology and inorganic phosphorus accumulation in plants grown on phytate hydroponically or in perlite as the only source of phosphorus were investigated. The most enzymatic activity for both phytases was detected in cell wall-bound fractions of roots, indicating that these enzymes were efficiently secreted. Expression of both bacterial phytases in roots improved plant growth on phytate and resulted in larger rosette leaf area and diameter, higher phosphorus content and increased shoot dry weight, implying that these plants were indeed capable of utilizing phytate as the source of phosphorus for growth and development. When grown on phytate the HAP-type phytase outperformed its BPP-type counterpart for plant biomass production, though this effect was only observed in hydroponic conditions and not in perlite. Furthermore, we found no evidence of adverse side effects of microbial phytase expression in A. thaliana on plant physiology and seed germination. Our data highlight important functional differences between these members of bacterial phytase families and indicate that future crop biotechnologies involving such enzymes will require a very careful evaluation of phytase source and activity. Overall, our data suggest feasibility of using bacterial phytases to improve plant growth in conditions of phosphorus deficiency and demonstrate that inducible expression of recombinant enzymes should be investigated further as a viable approach to plant biotechnology

    Presentation_1.PDF

    No full text
    <p>Phytases are specialized phosphatases capable of releasing inorganic phosphate from myo-inositol hexakisphosphate (phytate), which is highly abundant in many soils. As inorganic phosphorus reserves decrease over time in many agricultural soils, genetic manipulation of plants to enable secretion of potent phytases into the rhizosphere has been proposed as a promising approach to improve plant phosphorus nutrition. Several families of biotechnologically important phytases have been discovered and characterized, but little data are available on which phytase families can offer the most benefits toward improving plant phosphorus intake. We have developed transgenic Arabidopsis thaliana plants expressing bacterial phytases PaPhyC (HAP family of phytases) and 168phyA (BPP family) under the control of root-specific inducible promoter Pht1;2. The effects of each phytase expression on growth, morphology and inorganic phosphorus accumulation in plants grown on phytate hydroponically or in perlite as the only source of phosphorus were investigated. The most enzymatic activity for both phytases was detected in cell wall-bound fractions of roots, indicating that these enzymes were efficiently secreted. Expression of both bacterial phytases in roots improved plant growth on phytate and resulted in larger rosette leaf area and diameter, higher phosphorus content and increased shoot dry weight, implying that these plants were indeed capable of utilizing phytate as the source of phosphorus for growth and development. When grown on phytate the HAP-type phytase outperformed its BPP-type counterpart for plant biomass production, though this effect was only observed in hydroponic conditions and not in perlite. Furthermore, we found no evidence of adverse side effects of microbial phytase expression in A. thaliana on plant physiology and seed germination. Our data highlight important functional differences between these members of bacterial phytase families and indicate that future crop biotechnologies involving such enzymes will require a very careful evaluation of phytase source and activity. Overall, our data suggest feasibility of using bacterial phytases to improve plant growth in conditions of phosphorus deficiency and demonstrate that inducible expression of recombinant enzymes should be investigated further as a viable approach to plant biotechnology.</p

    Comparative Genome Analysis of Two Bacillus pumilus Strains Producing High Level of Extracellular Hydrolases

    No full text
    Whole-genome sequencing of a soil isolate Bacillus pumilus, strain 7P, and its streptomycin-resistant derivative, B. pumilus 3-19, showed genome sizes of 3,609,117 bp and 3,609,444 bp, respectively. Annotation of the genome showed 3794 CDS (3204 with predicted function) and 3746 CDS (3173 with predicted function) in the genome of strains 7P and 3-19, respectively. In the genomes of both strains, the prophage regions Bp1 and Bp2 were identified. These include 52 ORF of prophage proteins in the Bp1 region and 38 prophages ORF in the Bp2 region. Interestingly, more than 50% of Bp1 prophage proteins are similar to the proteins of the phi105 in B. subtilis. The DNA region of Bp2 has 15% similarity to the DNA of the Brevibacillus Jimmer phage. Degradome analysis of the genome of both strains revealed 148 proteases of various classes. These include 60 serine proteases, 48 metalloproteases, 26 cysteine proteases, 4 aspartate proteases, 2 asparagine proteases, 3 threonine proteases, and 2 unclassified proteases. Likewise, three inhibitors of proteolytic enzymes were found. Comparative analysis of variants in the genomes of strains 7P and 3-19 showed the presence of 81 nucleotide variants in the genome 3-19. Among them, the missense mutations in the rpsL, comA, spo0F genes and in the upstream region of the srlR gene were revealed. These nucleotide polymorphisms may have affected the streptomycin resistance and overproduction of extracellular hydrolases of the 3-19 strain. Finally, a plasmid DNA was found in strain 7P, which is lost in its derivative, strain 3-19. This plasmid contains five coding DNA sequencing (CDS), two regulatory proteins and three hypothetical proteins
    corecore