37 research outputs found

    Melatonin receptors in GtoPdb v.2023.1

    Get PDF
    Melatonin receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Melatonin Receptors [40]) are activated by the endogenous ligands melatonin and clinically used drugs like ramelteon, agomelatine and tasimelteon

    Melatonin receptors in GtoPdb v.2021.3

    Get PDF
    Melatonin receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Melatonin Receptors [40]) are activated by the endogenous ligands melatonin and clinically used drugs like ramelteon, agomelatine and tasimelteon

    Melatonin receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Melatonin receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Melatonin Receptors [36]) are activated by the endogenous ligands melatonin and clinically used drugs like ramelteon, agomelatine and tasimelteon

    Long-term effects of maternal separation on the responsiveness of the circadian system to melatonin in the diurnal nonhuman primate (Macaca mulatta)

    No full text
    Depression is often linked to early-life adversity and circadian disturbances. Here, we assessed the long-term impact of early-life adversity, particularly preweaning mother-infant separation, on the circadian system's responsiveness to a time giver or synchronizer (Zeitgeber). Mother-reared (MR) and peer-reared (PR) rhesus monkeys were subjected to chronic jet-lag, a forced desynchrony protocol of 22 hr T-cycles [11:11 hr light:dark (LD) cycles] to destabilize the central circadian organization. MR and PR monkeys subjected to the T-cycles showed split locomotor activity rhythms with periods of ~22 hr (entrained) and ~24 hr (free-running), simultaneously. Continuous melatonin treatment in the drinking water (20 μg/mL) gradually increased the amplitude of the entrained rhythm at the expense of the free-running rhythm, reaching complete entrainment by 1 wk. Upon release into constant dim light, a rearing effect on anticipation for both the predicted light onset and food presentation was observed. In MR monkeys, melatonin did not affect the amplitude of anticipatory behavior. Interestingly, however, PR macaques showed light onset and food anticipatory activities in response to melatonin treatment. These results demonstrate for the first time a rearing-dependent effect of maternal separation in macaques, imprinting long-term plastic changes on the circadian system well into late adulthood. These effects could be counteracted by the synchronizer molecule melatonin. We conclude that the melatonergic system is targeted by early-life adversity of maternal separation and that melatonin supplementation ameliorates the negative impact of stress on the circadian system

    Circadian periods of sensitivity for ramelteon on the onset of running-wheel activity and the peak of suprachiasmatic nucleus neuronal firing rhythms in C3HHeN mice

    No full text
    Ramelteon, an MT1MT2 melatonin receptor agonist, is used for the treatment of sleep-onset insomnia and circadian sleep disorders. Ramelteon phase shifts circadian rhythms in rodents and humans when given at the end of the subjective day; however, its efficacy at other circadian times is not known. Here, the authors determined in C3HHeN mice the maximal circadian sensitivity for ramelteon in vivo on the onset of circadian running-wheel activity rhythms, and in vitro on the peak of circadian rhythm of neuronal firing in suprachiasmatic nucleus (SCN) brain slices. The phase response curve (PRC) for ramelteon (90gmouse, subcutaneous [sc]) on circadian wheel-activity rhythms shows maximal sensitivity during the late mid to end of the subjective day, between CT8 and CT12 (phase advance), and late subjective night and early subjective day, between CT20 and CT2 (phase delay), using a 3-day-pulse treatment regimen in C3HHeN mice. The PRC for ramelteon resembles that for melatonin in C3HHeN mice, showing the same magnitude of maximal shifts at CT10 and CT2, except that the range of sensitivity for ramelteon (CT8CT12) during the subjective day is broader. Furthermore, in SCN brain slices in vitro, ramelteon (10 pM) administered at CT10 phase advances (5.6±0.29h, n3) and at CT2 phase delays (-3.2±0.12h, n6) the peak of circadian rhythm of neuronal firing, with the shifts being significantly larger than those induced by melatonin (10 pM) at the same circadian times (CT10: 2.7±0.15h, n4,

    Learned motivation drives circadian physiology in the absence of the master circadian clock

    No full text
    The suprachiasmatic nucleus (SCN)-often referred to as the master circadian clock-is essential in generating physiologic rhythms and orchestrating synchrony among circadian clocks. This study tested the hypothesis that periodic motivation induced by rhythmically pairing 2 reinforcing stimuli [methamphetamine (Meth) and running wheel (RW)] restores autonomous circadian activity in arrhythmic SCN-lesioned (SCNX) C3H/HeN mice. Sham-surgery and SCNX mice were treated with either Meth (1.2 mg/kg, i.p.) or vehicle in association, dissociation, or absence of an RW. Only the association of Meth treatment and restricted RW access successfully reestablished entrained circadian rhythms in mice with SCNX. RW-likely acting as a link between the circadian and reward systems-promotes circadian entrainment of activity.We conclude that a conditioned drug response is a powerful tool to entrain, drive, and restore circadian physiology. Furthermore, an RW should be recognized as a potent input signal in addition to the conventional use as an output signal
    corecore