5 research outputs found

    Lipocalin-2 is involved in emotional behaviors and cognitive function

    Get PDF
    Lipocalin-2 is involved in emotional behaviors and cognitive functionLipocalin-2 (LCN2), an iron-related protein well described to participate in the innate immune response, has been shown to modulate spine morphology and to regulate neuronal excitability. In accordance, LCN2-null mice are reported to have stress-induced anxiety. Here we show that, under standard housing conditions, LCN2-null mice display anxious and depressive-like behaviors, as well as cognitive impairment in spatial learning tasks. These behavioral alterations were associated with a hyperactivation of the hypothalamic-pituitary-adrenal axis and with an altered brain cytoarchitecture in the hippocampus. More specifically, we found that the granular and pyramidal neurons of the ventral hippocampus, a region described to be associated with emotion, were hypertrophic, while neurons from the dorsal hippocampus, a region implicated in memory and cognition, were atrophic. In addition, LCN2-null mice presented synaptic impairment in hippocampal long-term potentiation. Whether the LCN2 effects are mediated through modulation of the level of corticosteroids or through a novel mechanism, the present observations bring further into light this immune-related protein as a player in the fine-tuning of behavior and of synaptic activity.We are grateful to Professor Shizuo Akira and Professor Cevayir Coban for the LCN2-null mice in the BALB/c background and to Professor Trude Flo for the LCN2-null mice in C57BL/6J background. Ana C. Ferreira, Sandro D. Mesquita, and Ashley Novais are recipients of Ph.D. and Fernanda Marques and Vitor Pinto are recipients of postdoctoral fellowships from Fundacao para a Ciencia e Tecnologia (Portugal)

    Lipocalin 2 is present in the EAE brain and is modulated by natalizumab

    Get PDF
    The authors acknowledge the BiogenIdec, for providing Natalizumab (BiogenIdec, Boston, MA, USA). We are thankful to theCOST(European Cooperation in Science and Technology) Action NEURINFNETBM0603. We also thank Dr. Nadine Santos for critically reviewing this manuscript.Multiple sclerosis (MS) is a demyelinating disease that causes major neurological disability in young adults. A definitive diagnosis at the time of the first episode is still lacking, but since early treatment leads to better prognosis, the search for early biomarkers is needed. Here we characterized the transcriptome of the choroid plexus (CP), which is part of the blood-brain barriers (BBBs) and the major site of cerebrospinal fluid production, in the experimental autoimmune encephalomyelitis (EAE) mouse model of MS. In addition, cerebrospinal fluid samples from two cohorts of patients with MS and with optic neuritis (ON) were analyzed to confirm the clinical relevance of the findings. Genes encoding for adhesion molecules, chemokines and cytokines displayed the most altered expression, supporting the role of CP as a site of immune-brain interaction in MS. The gene encoding for lipocalin 2 was the most up-regulated; notably, the cerebrospinal fluid lipocalin 2 levels coincided with the active phases of the disease. Immunostaining revealed that neutrophils infiltrating the CP were the source of the increased lipocalin 2 expression in this structure. However, within the brain, lipocalin 2 was also detected in astrocytes, particularly in regions typically affected in patients with MS. The increase of lipocalin 2 in the cerebrospinal fluid and in astrocytes was reverted by natalizumab treatment. Most importantly, the results obtained in the murine model were translatable into humans since patients from two different cohorts presented increased cerebrospinal fluid lipocalin 2 levels. The findings support lipocalin 2 as a valuable molecule for the diagnostic/monitoring panel of MS.This work was supported by a grant from The Dana Foundation (USA) and by a grant from Fundação para a Ciência e Tecnologia(FCT, Portugal) (PIC/IC/83231/2007). Fernanda Marques and Sandro D. Mesquita are recipients of postdoctoral and doctoral fellow- ships from FCT, Portugal, respectively

    Neutrophils and macrophages: The main partners of phagocyte cell systems

    No full text
    Biological cellular systems are groups of cells sharing a set of characteristics, mainly key function and origin. Phagocytes are crucial in the host defense against microbial infection. The previously proposed phagocyte cell systems including the most recent and presently prevailing one, the Mononuclear Phagocyte System (MPS), grouped mononuclear cells but excluded neutrophils, creating an unacceptable situation. As neutrophils are archetypical phagocytes that must be members of comprehensive phagocyte systems, M. T. Silva recently proposed the creation of a Myeloid Phagocyte System (MYPS) that adds neutrophils to the MPS. The phagocytes grouped in the MYPS include the leukocytes neutrophils, inflammatory monocytes, macrophages and immature myeloid DCs. Here the justifications behind the inclusion of neutrophils in a phagocyte system is expanded and the MYPS are further characterized as a group of dedicated phagocytic cells that function in an interacting and cooperative way in the host defense against microbial infection. Neutrophils and macrophages are considered the main arms of this system

    An efficient chronic unpredictable stress protocol to induce stress-related responses in C57BL/6 mice

    No full text
    Exposure to chronic stress can have broad effects on health ranging from increased predisposition for neuropsychiatric disorders to deregulation of immune responses. The chronic unpredictable stress (CUS) protocol has been widely used to study the impact of stress exposure in several animal models and consists in the random, intermittent and unpredictable exposure to a variety of stressors during several weeks. CUS has consistently been shown to induce behavioral and immunological alterations typical of the chronic stress response. Unfortunately C57BL/6 mice, one of the most widely used mouse strains, due to the great variety of genetically modified lines, seem to be resistant to the commonly used 4-week-long CUS protocol. The definition of an alternative CUS protocol allowing the use of C57BL/6 mice in chronic stress experiments is a need. Here we show that by extending the CUS protocol to 8 weeks is possible to induce a chronic stress response in C57BL/6 mice, as revealed by abrogated body weight gain, increased adrenals weight and an overactive hypothalamic-pituitary-adrenal (HPA) axis with increased levels of serum corticosterone. Moreover, we also observed stress-associated behavioral alterations, including the potentiation of anxious-like and depressive-like behaviors and a reduction of exploratory behavior, as well as subtle stress-related changes in the cell population of the thymus and of the spleen.The present protocol for C57BL/6 mice consistently triggers the spectrum of CUS-induced changes observed in rats and, thus, will be highly useful to researchers that need to use this particular mouse strain as an animal model of neuropsychiatric disorders and/or immune deregulation related to chronic unpredictable stress

    Modulation of iron metabolism in aging and in Alzheimer’s disease: relevance of the choroid plexus.

    No full text
    Iron is essential for mammalian cellular homeostasis. However, in excess, it promotes free radical formation and is associated with aging-related progressive deterioration and with neurodegenerative disorders such as Alzheimer’s disease (AD). There are no mechanisms to excrete iron, which makes iron homeostasis a very tightly regulated process at the level of the intestinal absorption. Iron is believed to reach the brain through receptor mediated endocytosis of iron-bound transferrin by the brain barriers, the blood-cerebrospinal (CSF) fluid barrier, formed by the choroid plexus (CP) epithelial cells and the blood-brain barrier formed by the endothelial cells of the brain capillaries. Importantly, the CP epithelial cells are responsible for producing most of the CSF, the fluid that fills the brain ventricles and the subarachnoid space. Recently, the finding that the CP epithelial cells display all the machinery to locally control iron delivery into the CSF may suggest that the general and progressive senescence of the CP may be at the basis of the impairment of regional iron metabolism, iron-mediated toxicity and the increase in inflammation and oxidative stress that occurs with aging and, particularly, in AD
    corecore