13 research outputs found
Cell cycle dependence of protein subcellular location inferred from static, asynchronous images
Protein subcellular location is one of the most important determinants of protein function during cellular processes. Changes in protein behavior during the cell cycle are expected to be involved in cellular reprogramming during disease and development, and there is therefore a critical need to understand cell-cycle dependent variation in protein localization which may be related to aberrant pathway activity. With this goal, it would be useful to have an automated method that can be applied on a proteomic scale to identify candidate proteins showing cell-cycle dependent variation of location. Fluorescence microscopy, and especially automated, high-throughput microscopy, can provide images for tens of thousands of fluorescently-tagged proteins for this purpose. Previous work on analysis of cell cycle variation has traditionally relied on obtaining time-series images over an entire cell cycle; these methods are not applicable to the single time point images that are much easier to obtain on a large scale. Hence a method that can infer cell cycle-dependence of proteins from asynchronous, static cell images would be preferable. In this work, we demonstrate such a method that can associate protein pattern variation in static images with cell cycle progression. We additionally show that a one-dimensional parameterization of cell cycle progression and protein feature pattern is sufficient to infer association between localization and cell cycle
Common Genetic Polymorphisms Influence Blood Biomarker Measurements in COPD
Implementing precision medicine for complex diseases such as chronic obstructive lung disease (COPD) will require extensive use of biomarkers and an in-depth understanding of how genetic, epigenetic, and environmental variations contribute to phenotypic diversity and disease progression. A meta-analysis from two large cohorts of current and former smokers with and without COPD [SPIROMICS (N = 750); COPDGene (N = 590)] was used to identify single nucleotide polymorphisms (SNPs) associated with measurement of 88 blood proteins (protein quantitative trait loci; pQTLs). PQTLs consistently replicated between the two cohorts. Features of pQTLs were compared to previously reported expression QTLs (eQTLs). Inference of causal relations of pQTL genotypes, biomarker measurements, and four clinical COPD phenotypes (airflow obstruction, emphysema, exacerbation history, and chronic bronchitis) were explored using conditional independence tests. We identified 527 highly significant (p 10% of measured variation in 13 protein biomarkers, with a single SNP (rs7041; p = 10−392) explaining 71%-75% of the measured variation in vitamin D binding protein (gene = GC). Some of these pQTLs [e.g., pQTLs for VDBP, sRAGE (gene = AGER), surfactant protein D (gene = SFTPD), and TNFRSF10C] have been previously associated with COPD phenotypes. Most pQTLs were local (cis), but distant (trans) pQTL SNPs in the ABO blood group locus were the top pQTL SNPs for five proteins. The inclusion of pQTL SNPs improved the clinical predictive value for the established association of sRAGE and emphysema, and the explanation of variance (R2) for emphysema improved from 0.3 to 0.4 when the pQTL SNP was included in the model along with clinical covariates. Causal modeling provided insight into specific pQTL-disease relationships for airflow obstruction and emphysema. In conclusion, given the frequency of highly significant local pQTLs, the large amount of variance potentially explained by pQTL, and the differences observed between pQTLs and eQTLs SNPs, we recommend that protein biomarker-disease association studies take into account the potential effect of common local SNPs and that pQTLs be integrated along with eQTLs to uncover disease mechanisms. Large-scale blood biomarker studies would also benefit from close attention to the ABO blood group
Fluorogen-activating proteins as biosensors of cell-surface proteins in living cells.
This study explores the general utility of a new class of biosensor that allows one to selectively visualize molecules of a chosen membrane protein that are at the cell surface. These biosensors make use of recently described bipartite fluoromodules comprised of a fluorogen-activating protein (FAP) and a small molecule (fluorogen) whose fluorescence increases dramatically when noncovalently bound by the FAP (Szent-Gyorgyi et al., Nat Biotechnol 2010;00:000-000).</p
Self-Checking Cell-Based Assays for GPCR Desensitization and Resensitization.
<p>G protein-coupled receptors (GPCRs) play stimulatory or modulatory roles in numerous physiological states and processes, including growth and development, vision, taste and olfaction, behavior and learning, emotion and mood, inflammation, and autonomic functions such as blood pressure, heart rate, and digestion. GPCRs constitute the largest protein superfamily in the human and are the largest target class for prescription drugs, yet most are poorly characterized, and of the more than 350 nonolfactory human GPCRs, over 100 are orphans for which no endogenous ligand has yet been convincingly identified. We here describe new live-cell assays that use recombinant GPCRs to quantify two general features of GPCR cell biology-receptor desensitization and resensitization. The assays employ a fluorogen-activating protein (FAP) reporter that reversibly complexes with either of two soluble organic molecules (fluorogens) whose fluorescence is strongly enhanced when complexed with the FAP. Both assays require no wash or cleanup steps and are readily performed in microwell plates, making them adaptable to high-throughput drug discovery applications.</p
Cell cycle dependence of protein subcellular location inferred from static, asynchronous images.
Protein subcellular location is one of the most important determinants of protein function during cellular processes. Changes in protein behavior during the cell cycle are expected to be involved in cellular reprogramming during disease and development, and there is therefore a critical need to understand cell-cycle dependent variation in protein localization which may be related to aberrant pathway activity. With this goal, it would be useful to have an automated method that can be applied on a proteomic scale to identify candidate proteins showing cell-cycle dependent variation of location. Fluorescence microscopy, and especially automated, high-throughput microscopy, can provide images for tens of thousands of fluorescently-tagged proteins for this purpose. Previous work on analysis of cell cycle variation has traditionally relied on obtaining time-series images over an entire cell cycle; these methods are not applicable to the single time point images that are much easier to obtain on a large scale. Hence a method that can infer cell cycle-dependence of proteins from asynchronous, static cell images would be preferable. In this work, we demonstrate such a method that can associate protein pattern variation in static images with cell cycle progression. We additionally show that a one-dimensional parameterization of cell cycle progression and protein feature pattern is sufficient to infer association between localization and cell cycle.</p
Determining the subcellular location of new proteins from microscope images using local features.
MOTIVATION: Evaluation of previous systems for automated determination of subcellular location from microscope images has been done using datasets in which each location class consisted of multiple images of the same representative protein. Here, we frame a more challenging and useful problem where previously unseen proteins are to be classified.
RESULTS: Using CD-tagging, we generated two new image datasets for evaluation of this problem, which contain several different proteins for each location class. Evaluation of previous methods on these new datasets showed that it is much harder to train a classifier that generalizes across different proteins than one that simply recognizes a protein it was trained on. We therefore developed and evaluated additional approaches, incorporating novel modifications of local features techniques. These extended the notion of local features to exploit both the protein image and any reference markers that were imaged in parallel. With these, we obtained a large accuracy improvement in our new datasets over existing methods. Additionally, these features help achieve classification improvements for other previously studied datasets.
AVAILABILITY: The datasets are available for download at http://murphylab.web.cmu.edu/data/. The software was written in Python and C++ and is available under an open-source license at http://murphylab.web.cmu.edu/software/. The code is split into a library, which can be easily reused for other data and a small driver script for reproducing all results presented here. A step-by-step tutorial on applying the methods to new datasets is also available at that address.
CONTACT: [email protected]
SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.</p