41 research outputs found

    Educating Souls, Selves, or Minds?

    Get PDF
    ABSTRACT Margaret Carmody: Educating Souls, Selves, or Minds? (Under the direction of Madeleine Grumet) At the beginning of the twentieth century, the term “soul” was virtually deleted from curriculum theory and replaced with the categories of “self” and “mind” from the learning sciences. This dissertation is a hermeneutic study undertaken to explore inviting the term back as a structuring concept in curriculum theory without privileging specific religious beliefs and to address those aesthetic, subjective, moral, and somatic dimensions of human experience that often do not get addressed in curricula focused on minds and selves. I explore how a fusion of Waldorf School founder Rudolf Steiner’s theory of soul, Waldorf curriculum theory, psychotherapist Mari Ruti’s theory of a post-humanist soul, and philosopher Kieran Egan’s curriculum theory may provide a new horizon to which curriculum theory may direct its efforts to educate human beings to be more open to what is unknown and learn to respond to difference in caring, creative, and conscious ways. Keywords: Soul, Rudolf Steiner, Mari Ruti, Kieran Egan, Elementary School Curriculum Theory, Waldorf Education.Doctor of Philosoph

    Media Literacy Education: On the Move

    Get PDF

    The Medical Action Ontology: A tool for annotating and analyzing treatments and clinical management of human disease

    Get PDF
    Clinical management; Medical action ontology; OntologyGestión clínica; Ontología de la acción médica; OntologíaGestió clínica; Ontologia de l'acció mÚdica; OntologiaBackground Navigating the clinical literature to determine the optimal clinical management for rare diseases presents significant challenges. We introduce the Medical Action Ontology (MAxO), an ontology specifically designed to organize medical procedures, therapies, and interventions. Methods MAxO incorporates logical structures that link MAxO terms to numerous other ontologies within the OBO Foundry. Term development involves a blend of manual and semi-automated processes. Additionally, we have generated annotations detailing diagnostic modalities for specific phenotypic abnormalities defined by the Human Phenotype Ontology (HPO). We introduce a web application, POET, that facilitates MAxO annotations for specific medical actions for diseases using the Mondo Disease Ontology. Findings MAxO encompasses 1,757 terms spanning a wide range of biomedical domains, from human anatomy and investigations to the chemical and protein entities involved in biological processes. These terms annotate phenotypic features associated with specific disease (using HPO and Mondo). Presently, there are over 16,000 MAxO diagnostic annotations that target HPO terms. Through POET, we have created 413 MAxO annotations specifying treatments for 189 rare diseases. Conclusions MAxO offers a computational representation of treatments and other actions taken for the clinical management of patients. Its development is closely coupled to Mondo and HPO, broadening the scope of our computational modeling of diseases and phenotypic features. We invite the community to contribute disease annotations using POET (https://poet.jax.org/). MAxO is available under the open-source CC-BY 4.0 license (https://github.com/monarch-initiative/MAxO).This study was supported by the National Institutes of Health (NIH): NHGRI 1U24HG011449-01A1 and NHGRI 5RM1HG010860-04. R.H. is a Wellcome Trust Investigator (109915/Z/15/Z), who receives support from the Medical Research Council (UK) (MR/V009346/1), the Addenbrookes Charitable Trust (G100142), the Evelyn Trust, the Stoneygate Trust, the Lily Foundation, Action for AT and an MRC strategic award to establish an International Centre for Genomic Medicine in Neuromuscular Diseases (ICGNMD) MR/S005021/1. This research was supported by the NIHR Cambridge Biomedical Research Centre (BRC-1215-20014). The views expressed are those of the authors and not necessarily those of the NIHR or the Department of Health and Social Care

    Traditional Owners of the Great Barrier Reef: the next generation of Reef 2050 actions

    Get PDF
    In short, this Report: Confirms that there are two options for progressing the integration of Traditional Owner interests in the Reef 2050 Plan. Option 1 (Business As Usual) represents a continuation of the current approach of Government-based review and refinement of the (now 23) Traditional Owner actions in the Reef 2050 Plan. Option 2 (Towards Genuine Co-governance) represents Government taking a far more negotiated approach at the GBR-wide level (and subsequently down to local scales) that applies the principles of Free Prior and Informed Consent. Based on extensive engagement concerning the aspirations of Traditional Owners and their support organisations across the GBR, the overwhelming stated desire and demand is for genuine partnership in the overarching governance of the Reef and far deeper ownership of, and participation in, its active day to day management (Option 2). There is an unambiguous view that the foundations set in the Reef 2050 Plan (Option 1), while a step in the right direction, simply reflect Traditional Owner aspirations in someone else’s planning. Meanwhile, a consistent message from Traditional Owners, fuelled by their existing and emerging rights in sea country, is that this more passive form of involvement cannot continue into the future; that a genuine form of agreement making and active implementation (from GBR to local scales) must emerge

    The Medical Action Ontology: A tool for annotating and analyzing treatments and clinical management of human disease.

    Get PDF
    BACKGROUND: Navigating the clinical literature to determine the optimal clinical management for rare diseases presents significant challenges. We introduce the Medical Action Ontology (MAxO), an ontology specifically designed to organize medical procedures, therapies, and interventions. METHODS: MAxO incorporates logical structures that link MAxO terms to numerous other ontologies within the OBO Foundry. Term development involves a blend of manual and semi-automated processes. Additionally, we have generated annotations detailing diagnostic modalities for specific phenotypic abnormalities defined by the Human Phenotype Ontology (HPO). We introduce a web application, POET, that facilitates MAxO annotations for specific medical actions for diseases using the Mondo Disease Ontology. FINDINGS: MAxO encompasses 1,757 terms spanning a wide range of biomedical domains, from human anatomy and investigations to the chemical and protein entities involved in biological processes. These terms annotate phenotypic features associated with specific disease (using HPO and Mondo). Presently, there are over 16,000 MAxO diagnostic annotations that target HPO terms. Through POET, we have created 413 MAxO annotations specifying treatments for 189 rare diseases. CONCLUSIONS: MAxO offers a computational representation of treatments and other actions taken for the clinical management of patients. Its development is closely coupled to Mondo and HPO, broadening the scope of our computational modeling of diseases and phenotypic features. We invite the community to contribute disease annotations using POET (https://poet.jax.org/). MAxO is available under the open-source CC-BY 4.0 license (https://github.com/monarch-initiative/MAxO). FUNDING: NHGRI 1U24HG011449-01A1 and NHGRI 5RM1HG010860-04

    Introducing BASE: the Biomes of Australian Soil Environments soil microbial diversity database

    Get PDF
    Background: Microbial inhabitants of soils are important to ecosystem and planetary functions, yet there are large gaps in our knowledge of their diversity and ecology. The 'Biomes of Australian Soil Environments' (BASE) project has generated a database of microbial diversity with associated metadata across extensive environmental gradients at continental scale. As the characterisation of microbes rapidly expands, the BASE database provides an evolving platform for interrogating and integrating microbial diversity and function. Findings: BASE currently provides amplicon sequences and associated contextual data for over 900 sites encompassing all Australian states and territories, a wide variety of bioregions, vegetation and land-use types. Amplicons target bacteria, archaea and general and fungal-specific eukaryotes. The growing database will soon include metagenomics data. Data are provided in both raw sequence (FASTQ) and analysed OTU table formats and are accessed via the project's data portal, which provides a user-friendly search tool to quickly identify samples of interest. Processed data can be visually interrogated and intersected with other Australian diversity and environmental data using tools developed by the 'Atlas of Living Australia'. Conclusions: Developed within an open data framework, the BASE project is the first Australian soil microbial diversity database. The database will grow and link to other global efforts to explore microbial, plant, animal, and marine biodiversity. Its design and open access nature ensures that BASE will evolve as a valuable tool for documenting an often overlooked component of biodiversity and the many microbe-driven processes that are essential to sustain soil function and ecosystem services

    Crop Updates 2002 - Oilseeds

    Get PDF
    This session covers twenty seven papers from different authors: 1. Forward and acknowledgements, Dave Eksteen, ACTING MANAGER OILSEEDS PRODUCTIVITY AND INDUSTRY DEVELOPMENT Department of Agriculture PLENARY SESSION 2. GMO canola - Track record in Canada, K. Neil Harker and George W. Clayton,Agriculture and Agri-Food Canada, Lacombe Research Centre, Lacombe, Alberta, R. Keith Downey, Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, Saskatchewan 3. GMO canola – Prospects in Western Australia farming systems, Keith Alcock, Crop Improvement Institute, Department of Agriculture 4. Diamondback moth (DBM) in canola, Kevin Walden, Department of Agriculture CANOLA AGRONOMY 5. Getting the best out of canola in the low rainfall central wheatbelt, Bevan Addison and Peter Carlton, Elders Ltd 6. Canola variety performance in Western Australia, Kevin Morthorpe, Stephen Addenbrooke and Alex Ford, Pioneer Hi-Bred Australia P/L 7. Relative performance of new canola varieties in Department of Agriculture variety trials in 2000 and 2001, S. Hasan Zaheer, GSARI, Department of Agriculture, G. Walton, Crop Improvement Institute, Department of Agriculture 8. Which canola cultivar should I sow? Imma FarrĂ©, CSIRO Plant Industry, Floreat, Bill Bowden,Western Australia Department of Agriculture 9. The effect of seed generation and seed source on yield and quality of canola, Paul Carmody, Department of Agriculture 10. The accumulation of oil in Brassica species, J.A. Fortescue and D.W. Turner, Plant Biology, Faculty of Natural and Agricultural Sciences, The University of Western Australia, B. Tan, PO Box 1249, South Perth 11. Potential and performance of alternative oilseeds in WA, Margaret C. Campbell, Centre for Legumes in Mediterranean Agriculture 12. Comparison of oilseed crops in WA, Ian Pritchard and Paul Carmody, Department of Agriculture, Centre for Cropping Systems, Margaret Campbell, Centre for Legumes in Mediterranean Agriculture 13. Identifying constraints to canola production, Dave Eksteen, Canola Development Officer, Department of Agriculture 14. Boron – should we be worried about it? Richard W. BellA, K. FrostA, Mike WongB, and Ross BrennanC , ASchool of Environmental Science, Murdoch University, BCSIRO Land and Water, CDepartment of Agriculture PEST AND DISEASE 15. Yield losses caused when Beet Western Yellows Virus infects canola, Roger Jones and Jenny Hawkes, Department of Agriculture, and Centre for Legumes in Mediterranean Agriculture 16. Influence of climate on aphid outbreaks and virus epidemics in canola, Debbie Thackray, Jenny Hawkes and Roger Jones, Centre for Legumes in Mediterranean Agriculture and Department of Agriculture 17. The annual shower of blackleg ascospores in canola: Can we predict and avoid it? Moin U. Salam, Ravjit K. Khangura, Art J. Diggle and Martin J. Barbetti, Department of Agriculture 18. Environmental influences on production and release of ascospores of blackleg and their implications in blackleg management in canola, Ravjit K. Khangura, Martin J. Barbetti , Moin U. Salam and Art J. Diggle, Department of Agriculture 19. WA blackleg resistance ratings on canola varieties form 2002, Ravjit Khangura, Martin J. Barbetti and Graham Walton, Department of Agriculture 20. Bronzed field beetle management in canola, Phil Michael, Department of Agriculture 21. DBM control in canola: Aerial versus boom application, Paul Carmody, Department of Agriculture 22. Effect of single or multiple spray trearments on the control of Diamondback moth (Plutella xylostella) and yield of canola at Wongan Hills, Françoise Berlandier, Paul Carmody and Christiaan Valentine, Department of Agriculture ESTABLISHMENT 23. GrainGuardÔ - A biosecurity plan for the canola industry, Greg Shea, Department of Agriculture 24. Large canola seed is best, particularly for deep sowing, Glen Riethmuller, Rafiul Alam, Greg Hamilton and Jo Hawksley, Department of Agriculture 25. Canola establishment with seed size, tines and discs, with and without stubble, Glen Riethmuller, Rafiul Alam, Greg Hamilton and Jo Hawksley, Department of Agriculture WEEDS 26. Role of Roundup ReadyÒ canola in the farming system, Art Diggle1, Patrick Smith2, Paul Neve3, Felicity Flugge4, Amir Abadi5, Stephen Powles3 1Department of Agriculture, 2CSIRO, Sustainable Ecosystems, 3Western Australian Herbicide Resistance Initiative, University of Western Australia, 4Centre for Legumes in Mediterranean Agriculture, University of Western Australia, 5Touchstone Consulting, Mt Hawthorn FEED 27. Getting value from canola meals in the animal feed industries: Aquaculture, Brett Glencross and John Curnow, Department of Fisheries - Government of Western Australia and Wayne Hawkins, Department of Agricultur

    Introducing BASE: the Biomes of Australian Soil Environments soil microbial diversity database

    Get PDF
    Microbial inhabitants of soils are important to ecosystem and planetary functions, yet there are large gaps in our knowledge of their diversity and ecology. The ‘Biomes of Australian Soil Environments’ (BASE) project has generated a database of microbial diversity with associated metadata across extensive environmental gradients at continental scale. As the characterisation of microbes rapidly expands, the BASE database provides an evolving platform for interrogating and integrating microbial diversity and function

    Introducing BASE: the Biomes of Australian Soil Environments soil microbial diversity database

    Get PDF
    Corrected by: Erratum: Introducing BASE: The Biomes of Australian Soil Environments soil microbial diversity database [GigaScience. 5, 1, (2016) (1-11)] DOI: 10.1186/s13742-016-0126-5. In GigaScience 6(5):1, the authorship list should have included Leon Court, who was responsible for sample collection and preparation, sampling design and sequencing method design. The authors regret this omission.BACKGROUND Microbial inhabitants of soils are important to ecosystem and planetary functions, yet there are large gaps in our knowledge of their diversity and ecology. The ‘Biomes of Australian Soil Environments’ (BASE) project has generated a database of microbial diversity with associated metadata across extensive environmental gradients at continental scale. As the characterisation of microbes rapidly expands, the BASE database provides an evolving platform for interrogating and integrating microbial diversity and function. FINDINGS BASE currently provides amplicon sequences and associated contextual data for over 900 sites encompassing all Australian states and territories, a wide variety of bioregions, vegetation and land-use types. Amplicons target bacteria, archaea and general and fungal-specific eukaryotes. The growing database will soon include metagenomics data. Data are provided in both raw sequence (FASTQ) and analysed OTU table formats and are accessed via the project’s data portal, which provides a user-friendly search tool to quickly identify samples of interest. Processed data can be visually interrogated and intersected with other Australian diversity and environmental data using tools developed by the ‘Atlas of Living Australia’. CONCLUSIONS Developed within an open data framework, the BASE project is the first Australian soil microbial diversity database. The database will grow and link to other global efforts to explore microbial, plant, animal, and marine biodiversity. Its design and open access nature ensures that BASE will evolve as a valuable tool for documenting an often overlooked component of biodiversity and the many microbe-driven processes that are essential to sustain soil function and ecosystem services.Andrew Bissett, Anna Fitzgerald, Thys Meintjes, Pauline M. Mele, Frank Reith, Paul G. Dennis, Martin F. Breed, Belinda Brown, Mark V. Brown, Joel Brugger, Margaret Byrne, Stefan Caddy-Retalic, Bernie Carmody, David J. Coates, Carolina Correa, Belinda C. Ferrari, Vadakattu V. S. R. Gupta, Kelly Hamonts, Asha Haslem, Philip Hugenholtz, Mirko Karan, Jason Koval, Andrew J. Lowe, Stuart Macdonald, Leanne McGrath, David Martin, Matt Morgan, Kristin I. North, Chanyarat Paungfoo-Lonhienne, Elise Pendall, Lori Phillips, Rebecca Pirzl, Jeff R. Powell, Mark A. Ragan, Susanne Schmidt, Nicole Seymour, Ian Snape, John R. Stephen, Matthew Stevens, Matt Tinning, Kristen Williams, Yun Kit Yeoh, Carla M. Zammit, and Andrew Youn
    corecore