6 research outputs found

    Freezing Tolerance of Thermophilic Bacterial Endospores in Marine Sediments

    Get PDF
    Dormant endospores of anaerobic, thermophilic bacteria found in cold marine sediments offer a useful model for studying microbial biogeography, dispersal, and survival. The dormant endospore phenotype confers resistance to unfavorable environmental conditions, allowing dispersal to be isolated and studied independently of other factors such as environmental selection. To study the resilience of thermospores to conditions relevant for survival in extreme cold conditions, their viability following different freezing treatments was tested. Marine sediment was frozen at either −80°C or −20°C for 10 days prior to pasteurization and incubation at +50°C for 21 days to assess thermospore viability. Sulfate reduction commenced at +50°C following both freezing pretreatments indicating persistence of thermophilic endospores of sulfate-reducing bacteria. The onset of sulfate reduction at +50°C was delayed in −80°C pretreated microcosms, which exhibited more variability between triplicates, compared to −20°C pretreated microcosms and parallel controls that were not frozen in advance. Microbial communities were evaluated by 16S rRNA gene amplicon sequencing, revealing an increase in the relative sequence abundance of thermophilic endospore-forming Firmicutes in all microcosms. Different freezing pretreatments (−80°C and −20°C) did not appreciably influence the shift in overall bacterial community composition that occurred during the +50°C incubations. Communities that had been frozen prior to +50°C incubation showed an increase in the relative sequence abundance of operational taxonomic units (OTUs) affiliated with the class Bacilli, relative to unfrozen controls. These results show that freezing impacts but does not obliterate thermospore populations and their ability to germinate and grow under appropriate conditions. Indeed the majority of the thermospore OTUs detected in this study (21 of 22) could be observed following one or both freezing treatments. These results are important for assessing thermospore viability in frozen samples and following cold exposure such as the very low temperatures that would be encountered during panspermia

    Characterization of marine microbial communities around an Arctic seabed hydrocarbon seep at Scott Inlet, Baffin Bay

    Get PDF
    Seabed hydrocarbon seeps present natural laboratories for investigating responses of marine ecosystems to petroleum input. A hydrocarbon seep near Scott Inlet, Baffin Bay, was visited for in situ observations and sampling in the summer of 2018. Video evidence of an active hydrocarbon seep was confirmed by methane and hydrocarbon analysis of the overlying water column, which is 260 m at this site. Elevated methane concentrations in bottom water above and down current from the seep decreased to background seawater levels in the mid-water column >150 m above the seafloor. Seafloor microbial mats morphologically resembling sulfide-oxidizing bacteria surrounded areas of bubble ebullition. Calcareous tube worms, brittle stars, shrimp, sponges, sea stars, sea anemones, sea urchins, small fish and soft corals were observed near the seep, with soft corals showing evidence for hydrocarbon incorporation. Sediment microbial communities included putative methane-oxidizing Methyloprofundus, sulfate-reducing Desulfobulbaceae and sulfide-oxidizing Sulfurovum. A metabolic gene diagnostic for aerobic methanotrophs (pmoA) was detected in the sediment and bottom water above the seep epicentre and up to 5 km away. Both 16S rRNA gene and pmoA amplicon sequencing revealed that pelagic microbial communities oriented along the geologic basement rise associated with methane seepage (running SW to NE) differed from communities in off-axis water up to 5 km away. Relative abundances of aerobic methanotrophs and putative hydrocarbon-degrading bacteria were elevated in the bottom water down current from the seep. Detection of bacterial clades typically associated with hydrocarbon and methane oxidation highlights the importance of Arctic marine microbial communities in mitigating hydrocarbon emissions from natural geologic sources

    In-situ mechanical weakness of subducting sediments beneath a plate boundary décollement in the Nankai Trough

    Get PDF
    © 2018, The Author(s). The study investigates the in-situ strength of sediments across a plate boundary décollement using drilling parameters recorded when a 1180-m-deep borehole was established during International Ocean Discovery Program (IODP) Expedition 370, Temperature-Limit of the Deep Biosphere off Muroto (T-Limit). Information of the in-situ strength of the shallow portion in/around a plate boundary fault zone is critical for understanding the development of accretionary prisms and of the décollement itself. Studies using seismic reflection surveys and scientific ocean drillings have recently revealed the existence of high pore pressure zones around frontal accretionary prisms, which may reduce the effective strength of the sediments. A direct measurement of in-situ strength by experiments, however, has not been executed due to the difficulty in estimating in-situ stress conditions. In this study, we derived a depth profile for the in-situ strength of a frontal accretionary prism across a décollement from drilling parameters using the recently established equivalent strength (EST) method. At site C0023, the toe of the accretionary prism area off Cape Muroto, Japan, the EST gradually increases with depth but undergoes a sudden change at ~ 800 mbsf, corresponding to the top of the subducting sediment. At this depth, directly below the décollement zone, the EST decreases from ~ 10 to 2 MPa, with a change in the baseline. This mechanically weak zone in the subducting sediments extends over 250 m (~ 800–1050 mbsf), corresponding to the zone where the fluid influx was discovered, and high-fluid pressure was suggested by previous seismic imaging observations. Although the origin of the fluids or absolute values of the strength remain unclear, our investigations support previous studies suggesting that elevated pore pressure beneath the décollement weakens the subducting sediments. [Figure not available: see fulltext.]
    corecore