11 research outputs found

    The Potency of Hematopoietic Stem Cells (HSCs) and Natural Killer (NK) Cells as A Therapeutic of SARS-CoV-2 Indonesia Isolates Infection by Viral Inactivation (In Vitro Study)

    Get PDF
    Background: The prevalence of COVID-19 cases in Indonesia as of June 9, 2020, has been confirmed 32.076 positive cases, with 1.923 death cases. The total number of deaths reached 92,941 cases. There has been a recent update on stem cell-based biological, medical therapy as an optional treatment to handling COVID-19 due to its potential viability besides using the prevalent conventional chemical drug therapy. Methods: In this study, in vitro research was conducted to determine the potential of hematopoietic stem cells (HSCs) and natural killer cells (NK cells) against SARS-CoV-2 viruses, which virus isolates were collected in Indonesia. The SARS-CoV-2 virus was planted in rat kidney cells and Vero cells. The cells that had been planted with the virus were given HSCs and NK cells, followed by being evaluated at intervals of 24, 48, and 72 hours. The evaluation was done by collecting cells and supernatant from the cell plate and then determining the viral load using a Polymerase Chain Reaction (PCR) machine. Results: The results showed that the addition of HSCs and NK on cells that had been infected by SARS-CoV-2 resulted in a decrease in viral load within 24 to 72 hours in all variations of Multiples of Infection (MoI) values. Conclusions: The administration of HSCs and NK cells has the potential to eliminate the SARS-CoV-2 virus. Although this study is only an in vitro study, it could be the basis for the development of alternative stem cell-based therapies to tackle COVID-19 cases

    The potency of hematopoietic stem cells (hscs) and natural killer (nk) cells as a therapeutic of sars-cov-2 Indonesia isolates infection by viral inactivation (in vitro Study)

    Get PDF
    Background: The prevalence of COVID-19 cases in Indonesia as of June 9, 2020, has been confirmed 32.076 positive cases, with 1.923 death cases. The total number of deaths reached 92,941 cases. There has been a recent update on stem cell-based biological, medical therapy as an optional treatment to handling COVID-19 due to its potential viability besides using the prevalent conventional chemical drug therapy. Methods: In this study, in vitro research was conducted to determine the potential of hematopoietic stem cells (HSCs) and natural killer cells (NK cells) against SARS-CoV-2 viruses, which virus isolates were collected in Indonesia. The SARS-CoV-2 virus was planted in rat kidney cells and Vero cells. The cells that had been planted with the virus were given HSCs and NK cells, followed by being evaluated at intervals of 24, 48, and 72 hours. The evaluation was done by collecting cells and supernatant from the cell plate and then determining the viral load using a Polymerase Chain Reaction (PCR) machine. Results: The results showed that the addition of HSCs and NK on cells that had been infected by SARS-CoV-2 resulted in a decrease in viral load within 24 to 72 hours in all variations of Multiples of Infection (MoI) values. Conclusions: The administration of HSCs and NK cells has the potential to eliminate the SARS-CoV-2 virus. Although this study is only an in vitro study, it could be the basis for the development of alternative stem cell-based therapies to tackle COVID-19 cases

    The clinical impact of bacterial co-infection among moderate, severe and critically ill COVID-19 patients in the second referral hospital in Surabaya [version 2; peer review: 2 approved]

    Get PDF
    Background: Data on the prevalence of bacterial co-infections among COVID-19 patients are limited, especially in our country, Indonesia. We aimed to assess the rate of bacterial co-infections in hospitalized COVID-19 patients and report the most common microorganisms involved and the antibiotic use in these patients. Methods: This study is a retrospective cohort study, among COVID-19 adult patients admitted to Universitas Airlangga Hospital Surabaya from 14 March-30 September 2020. The bacterial infection is defined based on clinical assessment, laboratory parameters, and microbiology results. Results: A total of 218 patients with moderate to critical illness and confirmed COVID-19 were included in this study. Bacterial infection was confirmed in 43 patients (19.7%). COVID-19 patients with bacterial infections had longer hospital length of stay (17.6 ± 6.62 vs 13.31±7.12), a higher proportion of respiratory failure, intensive care treatment, and ventilator use. COVID-19 patients with bacterial infection had a worse prognosis than those without bacterial infection (p<0.04). The empirical antibiotic was given to 75.2% of the patients. Gram-negative bacteria were commonly found as causative agents in this study (n = 39; 70.37%). Conclusion: COVID-19 patients with bacterial infection have a longer length of stay and worse outcomes. Healthcare-associated infections during intensive care treatment for COVID-19 patients must be carefully prevented

    An in vitro study of dual drug combinations of anti-viral agents, antibiotics, and/or hydroxychloroquine against the SARS-CoV-2 virus isolated from hospitalized patients in Surabaya, Indonesia

    Get PDF
    A potent therapy for the infectious coronavirus disease COVID-19 is urgently required with, at the time of writing, research in this area still ongoing. This study aims to evaluate the in vitro anti-viral activities of combinations of certain commercially available drugs that have recently formed part of COVID-19 therapy. Dual combinatory drugs, namely; LopinavirRitonavir (LOPIRITO)-Clarithromycin (CLA), LOPIRITO-Azithromycin (AZI), LOPIRITODoxycycline (DOXY), Hydroxychloroquine (HCQ)-AZI, HCQ-DOXY, Favipiravir (FAVI)-AZI, HCQ-FAVI, and HCQ-LOPIRITO, were prepared. These drugs were mixed at specific ratios and evaluated for their safe use based on the cytotoxicity concentration (CC50) values of human umbilical cord mesenchymal stem cells. The anti-viral efficacy of these combinations in relation to Vero cells infected with SARS-CoV-2 virus isolated from a patient in Universitas Airlangga hospital, Surabaya, Indonesia and evaluated for IC50 24, 48, and 72 hours after viral inoculation was subsequently determined. Observation of the viral load in qRT-PCR was undertaken, the results of which indicated the absence of high levels of cytotoxicity in any samples and that dual combinatory drugs produced lower cytotoxicity than single drugs. In addition, these combinations demonstrated considerable effectiveness in reducing the copy number of the virus at 48 and 72 hours, while even at 24 hours, post-drug incubation resulted in low IC50 values. Most combination drugs reduced pro-inflammatory markers, i.e. IL-6 and TNF-α, while increasing the anti-inflammatory response of IL-10. According to these results, the descending order of effective dual combinatory drugs is one of LOPIRITO-AZI>LOPIRITO-DOXY>HCQ-AZI>HCQ FAVI>LOPIRITO-CLA>HCQ-DOX. It can be suggested that dual combinatory drugs, e.g. LOPIRITO-AZI, can potentially be used in the treatment of COVID-19 infectious diseases

    HUBUNGAN KADAR ADIPONEKTIN SERUM DAN DERAJAT FRAILTY PADA PENYAKIT PARU OBSTRUKTIF KRONIK USIA LANJUT Penelitian Analitik Cross Sectional Di Instalasi Rawat Jalan Rumah Sakit Umum Daerah dr. Soetomo

    No full text
    Penyakit paru obstruktif kronik (PPO) adalah penyakit khas pada populasi umur lanjut, dengan prevalens sekitar 12% pada umur lebih dari 64 tahun. PPOK ditandai dengan obstruksi saluran napas dan gangguan pertukaran gas. PPOK banyak didapatkan pada orang umur lanjut dan menanggung risiko penting untuk terjadinya morbiditas dan mortalitas. Meskipun penyakit ini dapat dicegah tetapi prevalens tetap tinggi karena kebiasaan merokok semakin meningkat. Faal paru dalam hal ini FEV1 merupakan pemeriksaan penting untuk sarana diagnosis PPOK dan menilai obstruksi saluran napas. METODE Studi ini dilakukan dengan desain potong lintang observasional untuk menilai derajad obstruksi saluran napas pada subjek PPOK merujuk pada kriteria GOLD. Studi ini dilakukan di Poli Paru dan Geriatri RSUD Dr Soetomo Surabaya. Kriteria inklusi subjek berumur lebih dari 60 tahun . Diagnosis PPOK berdasarkan FEV1/FVC setelah bronkodilator kurang dari 0,7 Derajad obstruksi ditentukan dengan kriteria GOLD I (ringan) bila FEV1/prediksi > 80%., GOLD II (sedang) bila FEV1/prediksi 50- 80%., GOLD III (berat) bila FEV1/prediksi 30-50%. GOLD IV (sangat berat) bila FEV1/prediksi <30%. Sampel diambil secara konsekutif. HASIL Sejumlah 38 subjek berpartisipasi pada studi ini. Sebagian besar berumur rentang 70-74 tahun. Derajad obstruksi didapatkan pada obstruksi derajad ringan dan tidak didapatkan subjek dengan obstruksi sangat berat. KESIMPULAN Subjek umur lanjut yang menderita PPOK sebagian besar derajad obstruksinya tingkat sedang

    Hemodynamic, Oxygenation and Lymphocyte Parameters Predict COVID-19 Mortality

    No full text
    The mortality of COVID-19 patients has left the world devastated. Many scoring systems have been developed to predict the mortality of COVID-19 patients, but several scoring components cannot be carried out in limited health facilities. Herein, the authors attempted to create a new and easy scoring system involving mean arterial pressure (MAP), PF Ratio, or SF ratio-respiration rate (SF Ratio-R), and lymphocyte absolute, which were abbreviated as MPL or MSLR functioning, as a predictive scoring system for mortality within 30 days for COVID-19 patients. Of 132 patients with COVID-19 hospitalized between March and November 2021, we followed up on 96 patients. We present bivariate and multivariate analyses as well as the area under the curve (AUC) and Kaplan–Meier charts. From 96 patients, we obtained an MPL score of 3 points: MAP p < 0.05). Conclusion: MPL and MSLR scores are potential predictors of mortality in COVID-19 patients within 30 days in a resource-limited country

    Derivation and validation of novel integrated inpatient mortality prediction score for COVID-19 (IMPACT) using clinical, laboratory, and AI—processed radiological parameter upon admission: a multicentre study

    No full text
    Abstract Limited studies explore the use of AI for COVID-19 prognostication. This study investigates the relationship between AI-aided radiographic parameters, clinical and laboratory data, and mortality in hospitalized COVID-19 patients. We conducted a multicentre retrospective study. The derivation and validation cohort comprised of 512 and 137 confirmed COVID-19 patients, respectively. Variable selection for constructing an in-hospital mortality scoring model was performed using the least absolute shrinkage and selection operator, followed by logistic regression. The accuracy of the scoring model was assessed using the area under the receiver operating characteristic curve. The final model included eight variables: anosmia (OR: 0.280; 95%CI 0.095–0.826), dyspnoea (OR: 1.684; 95%CI 1.049–2.705), loss of consciousness (OR: 4.593; 95%CI 1.702–12.396), mean arterial pressure (OR: 0.928; 95%CI 0.900–0.957), peripheral oxygen saturation (OR: 0.981; 95%CI 0.967–0.996), neutrophil % (OR: 1.034; 95%CI 1.013–1.055), serum urea (OR: 1.018; 95%CI 1.010–1.026), affected lung area score (OR: 1.026; 95%CI 1.014–1.038). The Integrated Inpatient Mortality Prediction Score for COVID-19 (IMPACT) demonstrated a predictive value of 0.815 (95% CI 0.774–0.856) in the derivation cohort. Internal validation resulted in an AUROC of 0.770 (95% CI 0.661–0.879). Our study provides valuable evidence of the real-world application of AI in clinical settings. However, it is imperative to conduct prospective validation of our findings, preferably utilizing a control group and extending the application to broader populations

    An in vitro study of dual drug combinations of anti-viral agents, antibiotics, and/or hydroxychloroquine against the SARS-CoV-2 virus isolated from hospitalized patients in Surabaya, Indonesia

    Get PDF
    A potent therapy for the infectious coronavirus disease COVID-19 is urgently required with, at the time of writing, research in this area still ongoing. This study aims to evaluate the in vitro anti-viral activities of combinations of certain commercially available drugs that have recently formed part of COVID-19 therapy. Dual combinatory drugs, namely; Lopinavir-Ritonavir (LOPIRITO)-Clarithromycin (CLA), LOPIRITO-Azithromycin (AZI), LOPIRITO-Doxycycline (DOXY), Hydroxychloroquine (HCQ)-AZI, HCQ-DOXY, Favipiravir (FAVI)-AZI, HCQ-FAVI, and HCQ-LOPIRITO, were prepared. These drugs were mixed at specific ratios and evaluated for their safe use based on the cytotoxicity concentration (CC50) values of human umbilical cord mesenchymal stem cells. The anti-viral efficacy of these combinations in relation to Vero cells infected with SARS-CoV-2 virus isolated from a patient in Universitas Airlangga hospital, Surabaya, Indonesia and evaluated for IC50 24, 48, and 72 hours after viral inoculation was subsequently determined. Observation of the viral load in qRT-PCR was undertaken, the results of which indicated the absence of high levels of cytotoxicity in any samples and that dual combinatory drugs produced lower cytotoxicity than single drugs. In addition, these combinations demonstrated considerable effectiveness in reducing the copy number of the virus at 48 and 72 hours, while even at 24 hours, post-drug incubation resulted in low IC50 values. Most combination drugs reduced pro-inflammatory markers, i.e. IL-6 and TNF-α, while increasing the anti-inflammatory response of IL-10. According to these results, the descending order of effective dual combinatory drugs is one of LOPIRITO-AZI>LOPIRITO-DOXY>HCQ-AZI>HCQ-FAVI>LOPIRITO-CLA>HCQ-DOX. It can be suggested that dual combinatory drugs, e.g. LOPIRITO-AZI, can potentially be used in the treatment of COVID-19 infectious diseases

    The Clinical Impact Of Bacterial Co-Infection Among Moderate, Severe And Critically Ill COVID-19 patients in the second referral Hospital In Surabaya

    Get PDF
    Background: Data on the prevalence of bacterial co-infections among COVID-19 patients are limited, especially in our country, Indonesia. We aimed to assess the rate of bacterial co-infections in hospitalized COVID-19 patients and report the most common microorganisms involved and the antibiotic use in these patients. Methods: This study is a retrospective cohort study, among COVID-19 adult patients admitted to Universitas Airlangga Hospital Surabaya from 14 March-30 September 2020. The bacterial infection is defined based on clinical assessment, laboratory parameters, and microbiology results. Results: A total of 218 patients with moderate to critical illness and confirmed COVID-19 were included in this study. Bacterial infection was confirmed in 43 patients (19.7%). COVID-19 patients with bacterial infections had longer hospital length of stay (17.6 ± 6.62 vs 13.31±7.12), a higher proportion of respiratory failure, intensive care treatment, and ventilator use. COVID-19 patients with bacterial infection had a worse prognosis than those without bacterial infection (p<0.04). The empirical antibiotic was given to 75.2% of the patients. Gram-negative bacteria were commonly found as causative agents in this study (n = 39; 70.37%). Conclusion: COVID-19 patients with bacterial infection have a longer length of stay and worse outcomes. Healthcare-associated infections during intensive care treatment for COVID-19 patients must be carefully prevented
    corecore