518 research outputs found

    Summing the strokes: energy economy in northern elephant seals during large-scale foraging migrations.

    Get PDF
    BackgroundThe energy requirements of free-ranging marine mammals are challenging to measure due to cryptic and far-ranging feeding habits, but are important to quantify given the potential impacts of high-level predators on ecosystems. Given their large body size and carnivorous lifestyle, we would predict that northern elephant seals (Mirounga angustirostris) have elevated field metabolic rates (FMRs) that require high prey intake rates, especially during pregnancy. Disturbance associated with climate change or human activity is predicted to further elevate energy requirements due to an increase in locomotor costs required to accommodate a reduction in prey or time available to forage. In this study, we determined the FMRs, total energy requirements, and energy budgets of adult, female northern elephant seals. We also examined the impact of increased locomotor costs on foraging success in this species.ResultsBody size, time spent at sea and reproductive status strongly influenced FMR. During the short foraging migration, FMR averaged 90.1 (SE = 1.7) kJ kg(-1)d(-1) - only 36 % greater than predicted basal metabolic rate. During the long migration, when seals were pregnant, FMRs averaged 69.4 (±3.0) kJ kg(-1)d(-1) - values approaching those predicted to be necessary to support basal metabolism in mammals of this size. Low FMRs in pregnant seals were driven by hypometabolism coupled with a positive feedback loop between improving body condition and reduced flipper stroking frequency. In contrast, three additional seals carrying large, non-streamlined instrumentation saw a four-fold increase in energy partitioned toward locomotion, resulting in elevated FMRs and only half the mass gain of normally-swimming study animals.ConclusionsThese results highlight the importance of keeping locomotion costs low for successful foraging in this species. In preparation for lactation and two fasting periods with high demands on energy reserves, migrating elephant seals utilize an economical foraging strategy whereby energy savings from reduced locomotion costs are shuttled towards somatic growth and fetal gestation. Remarkably, the energy requirements of this species, particularly during pregnancy, are 70-80 % lower than expected for mammalian carnivores, approaching or even falling below values predicted to be necessary to support basal metabolism in mammals of this size

    Recovery using “float” from high intensity stress on growth hormone-like molecules in resistance trained men

    Get PDF
    Objective The purpose of this study was to examine the influence of a novel “floatation-restricted environmental stimulation therapy” (floatation-REST) on growth hormone responses to an intense resistance exercise stress. Design Nine resistance trained men (age: 23.4 ± 2.5 yrs.; height: 175.3 ± 5.4 cm; body mass: 85.3 ± 7.9 kg) completed a balanced, crossover-controlled study design with two identical exercise trials, differing only in post-exercise recovery intervention (i.e., control or floatation-REST). A two-week washout period was used between experimental conditions. Plasma lactate was measured pre-exercise, immediately post-exercise and after the 1 h. recovery interventions. Plasma iGH was measured pre-exercise, immediately-post exercise, and after the recovery intervention, as well as 24 h and 48 h after the exercise test. The bGH-L was measured only at pre-exercise and following each recovery intervention. Results For both experimental conditions, a significant (P ≤ 0.05) increase in lactate concentrations were observed immediately post-exercise (~14 mmol • L-1) and remained slightly elevated after the recovery condition. The same pattern of responses was observed for iGH with no differences from resting values at 24 and 48 h of recovery. The bGH-L showed no exercise-induced changes following recovery with either treatment condition, however concentration values were dramatically lower than ever reported. Conclusion The use of floatation-REST therapy immediately following intense resistance exercise does not appear to influence anterior pituitary function in highly resistance trained men. However, the lower values of bGH suggest dramatically different molecular processing mechanisms at work in this highly trained population

    The betaine content of sweat from adolescent females

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study was developed to establish whether betaine was present in the sweat of females and to determine any correlations with other sweat components.</p> <p>Methods</p> <p>Sweat patches were placed on eight trained adolescent Highland dancers (age = 13.6 ± 2.3 yr), who then participated in a dance class for 2 hours. Patches were removed, and the sweat recovered via centrifugation. The sweat was subsequently analyzed for betaine, choline, sodium, potassium, chloride, lactate, glucose, urea and ammonia.</p> <p>Results</p> <p>Betaine was present in the sweat of all subjects (232 ± 84 μmol·L<sup>-1</sup>), which is higher than typically found in plasma. The concentration of several sweat components were correlated, in particular betaine with most other measured components.</p> <p>Conclusion</p> <p>Betaine, an osmoprotectant and methyl donor, is a component of sweat that may be lost from the body in significant amounts.</p

    Dietary calcium intake and Renin Angiotensin System polymorphisms alter the blood pressure response to aerobic exercise: a randomized control design

    Get PDF
    BACKGROUND: Dietary calcium intake and the renin angiotensin system (RAS) regulate blood pressure (BP) by modulating calcium homeostasis. Despite similar BP regulatory effects, the influence of dietary calcium intake alone and combined with RAS polymorphisms on the BP response following acute aerobic exercise (i.e., postexercise hypotension) has not been studied. Thus, we examined the effect of dietary calcium intake and selected RAS polymorphisms on postexercise hypotension. METHODS: Subjects were men (n = 50, 43.8 ± 1.3 yr) with high BP (145.3 ± 1.5/85.9 ± 1.1 mm Hg). They completed three experiments: non-exercise control and two cycle bouts at 40% and 60% of maximal oxygen consumption (VO(2)max). Subjects provided 3 d food records on five protocol-specific occasions. Dietary calcium intake was averaged and categorized as low (<880 mg/d = LowCa) or high (≥ 880 mg/d = HighCa). RAS polymorphisms (angiotensin converting enzyme insertion/deletion, ACE I/D; angiotensin II type 1 receptor, AT(1)R A/C) were analyzed with molecular methods. Genotypes were reduced from three to two: ACE II/ID and ACE DD; or AT(1)R AA and AT(1)R CC/AC. Repeated measure ANCOVA tested if BP differed among experiments, dietary calcium intake level and RAS polymorphisms. RESULTS: Systolic BP (SBP) decreased 6 mm Hg after 40% and 60% VO(2)max compared to non-exercise control for 10 h with LowCa (p < 0.01), but not with HighCa (p ≥ 0.05). Under these conditions, diastolic BP (DBP) did not differ between dietary calcium intake levels (p ≥ 0.05). With LowCa, SBP decreased after 60% VO(2)max versus non-exercise control for 10 h among ACE II/ID (6 mm Hg) and AT(1)R AA (8 mm Hg); and by 8 mm Hg after 40% VO(2)max among ACE DD and AT(1)R CC/CA (p < 0.01). With HighCa, SBP (8 mm Hg) and DBP (4 mm Hg) decreased after 60% VO(2)max compared to non-exercise control for 10 h (p < 0.05), but not after 40% VO(2)max (p ≥ 0.05). CONCLUSION: SBP decreased after exercise compared to non-exercise control among men with low but not high dietary calcium intake. Dietary calcium intake interacted with the ACE I/D and AT(1)R A/C polymorphisms to further modulate postexercise hypotension. Interactions among dietary calcium intake, exercise intensity and RAS polymorphisms account for some of the variability in the BP response to exercise

    Resistance Training and Milk-Substitution Enhance Body Composition and Bone Health in Adolescent Girls

    Get PDF
    Background: Increased soft-drink consumption has contributed to poor calcium intake with 90% of adolescent girls consuming less than the RDA for calcium. Purpose/objectives: The purpose of this investigation was to determine the independent and additive effects of two interventions (milk and resistance training) on nutrient adequacy, body composition, and bone health in adolescent girls. Methods: The experimental design consisted of four experimental groups of adolescent girls 14–17 years of age: (1) Milk + resistance training [MRT]; n = 15; (2) Resistance training only [RT]; n = 15; (3) Milk only [M] n = 20; (4) Control [C] n = 16. A few significant differences were observed at baseline between the groups for subject characteristics. Testing was performed pre and post-12 week training period for all groups. Milk was provided (3, 8 oz servings) for both the MRT and the M groups. The MRT group and the RT groups performed a supervised periodized resistance training program consisting of supervised one-hour exercise sessions 3 d/wk (M, W, F) for 12 wk. Baseline dietary data was collected utilizing the NUT-P-FFQ and/or a 120 item FFQ developed by the Fred Hutchinson Cancer Research Center (Seattle, Washington). Body composition was measured in the morning after an overnight fast using dual-energy X-ray absorptiometry (DXA) with a total body scanner (ProdigyTM, Lunar Corporation, Madison, WI). A whole body scan for bone density and lumbar spine scans were performed on all subjects. Maximal strength of the upper and lower body was assessed via a one-repetition maximum (1-RM) squat and bench press exercise protocols. Significance was set at P ≤ 0.05. Results: Significant differences in nutrient intakes between groups generally reflected the nutrient composition of milk with greater intakes of protein and improved nutrient adequacy for several B vitamins, vitamin A, vitamin D, calcium, magnesium, phosphorus, potassium, and zinc. Mean calcium intake was 758 and 1581 mg/d, in the non-milk and milk groups, respectively, with 100% of girls in the milk groups consuming \u3e RDA of 1300 mg/d. There were no effects of milk on body composition or muscle performance, but resistance training had a main effect and significantly increased body mass, lean body mass, muscle strength, and muscle endurance. There was a main effect of milk and resistance training on several measures of bone mineral density (BMD). Changes in whole body BMD in the M, RT, MRT, and CON were 0.45, 0.52, 1.32, and −0.19%, respectively (P \u3c 0.01). Conclusions: Over the course of 12 weeks the effects of 1300 mg/d of calcium in the form of fluid milk combined with a heavy resistance training program resulted in the additive effects of greater nutrient adequacy and BMD in adolescent girls. While further studies are needed, combining increased milk consumption with resistance training appears to optimize bone health in adolescent girls

    Ergogenic effects of betaine supplementation on strength and power performance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We investigated the ergogenic effects of betaine (B) supplementation on strength and power performance.</p> <p>Methods</p> <p>Twelve men (mean ± SD age, 21 ± 3 yr; mass, 79.1 ± 10.7 kg) with a minimum of 3 months resistance training completed two 14-day experimental trials separated by a 14-day washout period, in a balanced, randomized, double-blind, repeated measures, crossover design. Prior to and following 14 days of twice daily B or placebo (P) supplementation, subjects completed two consecutive days (D1 and D2) of a standardized high intensity strength/power resistance exercise challenge (REC). Performance included bench, squat, and jump tests.</p> <p>Results</p> <p>Following 14-days of B supplementation, D1 and D2 bench throw power (1779 ± 90 and 1788 ± 34 W, respectively) and isometric bench press force (2922 ± 297 and 2503 ± 28 N, respectively) were increased (p < 0.05) during REC compared to pre-supplementation values (1534 ± 30 and 1498 ± 29 W, respectively; 2345 ± 64 and 2423 ± 84 N, respectively) and corresponding P values (1374 ± 128 and 1523 ± 39 W; 2175 ± 92 and 2128 ± 56 N, respectively). Compared to pre-supplementation, vertical jump power and isometric squat force increased (p < 0.05) on D1 and D2 following B supplementation. However, there were no differences in jump squat power or the number of bench press or squat repetitions.</p> <p>Conclusion</p> <p>B supplementation increased power, force and maintenance of these measures in selected performance measures, and these were more apparent in the smaller upper-body muscle groups.</p

    Serum Fatty Acid Binding Protein 4 (FABP4) Predicts Pre-eclampsia in Women with Type 1 Diabetes

    Get PDF
    OBJECTIVE To examine the association between fatty acid binding protein 4 (FABP4) and pre-eclampsia risk in women with type 1 diabetes. RESEARCH DESIGN AND METHODS Serum FABP4 was measured in 710 women from the Diabetes and Pre-eclampsia Intervention Trial (DAPIT) in early pregnancy and in the second trimester (median 14 and 26 weeks’ gestation, respectively). RESULTS FABP4 was significantly elevated in early pregnancy (geometric mean 15.8 ng/mL [interquartile range 11.6–21.4] vs. 12.7 ng/mL [interquartile range 9.6–17]; P &amp;lt; 0.001) and the second trimester (18.8 ng/mL [interquartile range 13.6–25.8] vs. 14.6 ng/mL [interquartile range 10.8–19.7]; P &amp;lt; 0.001) in women in whom pre-eclampsia later developed. Elevated second-trimester FABP4 level was independently associated with pre-eclampsia (odds ratio 2.87 [95% CI 1.24–6.68], P = 0.03). The addition of FABP4 to established risk factors significantly improved net reclassification improvement at both time points and integrated discrimination improvement in the second trimester. CONCLUSIONS Increased second-trimester FABP4 independently predicted pre-eclampsia and significantly improved reclassification and discrimination. FABP4 shows potential as a novel biomarker for pre-eclampsia prediction in women with type 1 diabetes. </jats:sec

    Cardiorespiratory Progression Over 5 Years and Role of Corticosteroids in Duchenne Muscular Dystrophy: A Single-Site Retrospective Longitudinal Study

    Get PDF
    Background: Duchenne muscular dystrophy (DMD) boys treated with corticosteroids (CS) have prolonged survival and respiratory function when compared to CS-naïve. /\ud Research question: The differential impact of frequently used corticosteroids and their regimens on long-term (>5 years) cardiorespiratory progression in DMD children is unknown. / Study Design and Methods: Retrospective longitudinal study including DMD children followed at Dubowitz Neuromuscular Centre (Great Ormond Street Hospital London), May 2000-June 2017. Patients enrolled in any interventional clinical trials were excluded. We collected patients’ anthropometrics, respiratory (forced vital capacity, FVC% predicted and absolute FVC, non-invasive ventilation requirement, NIV) and cardiac (left ventricular shortening function, LVFS%) function. CS-naïve patients had never received CS. CS-treated took either deflazacort or prednisolone, daily or intermittently (10 days on/10 days off) for >1 month. Average longitudinal models were fitted for yearly respiratory (FVC%P) and cardiac (LVFS%) progression. A time-to-event analysis to FVC%P<50%, NIV start and cardiomyopathy (LVFS<28%) was performed in CS-treated (daily and intermittent) vs CS-naïve patients. / Results: There were 270 patients, mean age at baseline 6.2 (±2.3) years. Median follow-up 5.6 (± 3.5) years. At baseline, 263 were ambulant. Sixty-six were CS-daily, 182 CS-intermittent >60% treatment, 22 CS-naïve. Yearly FVC%P declined similarly from 9 years (5.9% and 6.9%/year, p=0.27) in CS-daily and CS-intermittent. CS-daily declined from a higher FVC%P than CS-intermittent (p2 years later than CS-treated. LVFS% declined by 0.53%/year in CS-treated irrespective of CS regimen, significantly slower (p<0.01) than CS-naïve progressing by 1.17%/year. Age at cardiomyopathy was 16.6 in CS-treated (p<0.05) irrespective of regimen and 13.9 years in CS-naïve. / Interpretation: CS irrespective of their regimen significantly improved respiratory function and delayed NIV requirement and cardiomyopathy
    corecore