6 research outputs found

    A polyphasic approach to study the dynamics of microbial population of an organic wheat sourdough during its conversion to gluten-free sourdough

    Get PDF
    To develop a method for organic gluten-free (GF) sourdough bread production, a long-term and original wheat sourdough was refreshed with GF flours. The dynamics of the sourdough microbiota during five months of back-slopping were analyzed by classical enumeration and molecular methods, including PCR-temporal temperature gel electrophoresis (PCR-TTGE), multiplex PCR, and pulsed field gel electrophoresis (PFGE). The results showed that the yeast counts remained constant, although Saccharomyces cerevisiae, present in the initial wheat sourdough, was no longer detected in the GF sourdough, while lactic acid bacteria (LAB) counts increased consistently. In the first phase, which was aimed at obtaining a GF sourdough from wheat sourdough, Lactobacillus sanfranciscensis, L. plantarum, and L. spicheri were the main LAB species detected. During the second phase, aimed at maintaining the GF sourdough, the L. plantarum and L. spicheri populations decreased whereas L. sanfranciscensis persisted and L. sakei became the predominant species. Multiplex PCRs also revealed the presence of several L. sakei strains in the GF sourdough. In a search for the origin of the LAB species, PCR-TTGE was performed on the flour samples but only L. sanfranciscensis was detected, suggesting a flour origin for this typical sourdough species. Thus, while replacement of the wheat flour by GF flour influenced the sourdough microbiota, some of the original sourdough LAB and yeast species remained in the GF sourdough. [Int Microbiol 2014; 17(1):1-9]Keywords: Lactobacillus spp. · Saccharomyces · Candida ·  sourdough · gluten-free food · organic · lactic acid bacteria · yeas

    The effect of organic wheat flour by-products on sourdough performances assessed by a multi-criteria approach

    No full text
    International audienceIn this study, we determined the effect of organic (i) flour ash content (1%-1.4%) and (ii) flour by-product addition (bran, shorts and germ) on sourdough performances. After five consecutive back-sloppings, sourdough was used for bread-making and its bread-related properties were assessed. No effect of flour composition factors (i & ii) on sourdough lactic acid bacteria and yeasts were highlighted. Nonetheless, they greatly altered lactic acid and acetic acid sourdough contents from 6.9 to 17.4 g/kg and from 0.9 to 2.2 g/kg, respectively. The flour ash content (i) had a significant and positive effect on sourdough acidity and CO2 production. Bread made with sourdough with a high ash content had a significantly higher acidity and specific volume. These physicochemical differences between breads were perceived by sensory evaluation in a significant way. Sourdough supplemented (ii) with germ had higher lactic acid and carbon dioxide contents than sourdough supplemented with bran and shorts. Hence, flour composition, combining ash content and flour by-products, appears to be an effective factor to obtain a better control of sourdough performances

    A polyphasic approach to study the dynamics of microbial population of an organic wheat sourdough during its conversion to gluten-free sourdough

    Get PDF
    To develop a method for organic gluten-free (GF) sourdough bread production, a long-term and original wheat sourdough was refreshed with GF flours. The dynamics of the sourdough microbiota during five months of back-slopping were analyzed by classical enumeration and molecular methods, including PCR-temporal temperature gel electrophoresis (PCR-TTGE), multiplex PCR, and pulsed field gel electrophoresis (PFGE). The results showed that the yeast counts remained constant, although Saccharomyces cerevisiae, present in the initial wheat sourdough, was no longer detected in the GF sourdough, while lactic acid bacteria (LAB) counts increased consistently. In the first phase, which was aimed at obtaining a GF sourdough from wheat sourdough, Lactobacillus sanfranciscensis, L. plantarum, and L. spicheri were the main LAB species detected. During the second phase, aimed at maintaining the GF sourdough, the L. plantarum and L. spicheri populations decreased whereas L. sanfranciscensis persisted and L. sakei became the predominant species. Multiplex PCRs also revealed the presence of several L. sakei strains in the GF sourdough. In a search for the origin of the LAB species, PCR-TTGE was performed on the flour samples but only L. sanfranciscensis was detected, suggesting a flour origin for this typical sourdough species. Thus, while replacement of the wheat flour by GF flour influenced the sourdough microbiota, some of the original sourdough LAB and yeast species remained in the GF sourdough. [Int Microbiol 2014; 17(1):1-9

    A reverse engineering approach of french breadmaking for nutritional purposes

    No full text
    The main purpose of this work is to design breads with improved nutritional properties without modifying their acceptability. The in vitro glycemic index (IG) of breads, with various contents of wheat dietary fibres (DF) and different densities, was determined by α-amylolysis and correlated to in vivo clinical measurements. Their texture has been assessed by multi-indentation and image analysis, in order to be able to compare their mechanical properties and cell structure features to sensory criteria. All results underlined the significance of bread density, whatever the composition and processing of breads. After a survey of professional practices to collect the know-how of breadmaking and determine the most important unit operations, the study at labscale of structural modifications during processing has focused on two main operations: dough proofing and making-up. A decrease of dough stability due to DF addition was evidenced by the follow-up of bread dough proofing by image analysis. This result was attributed to the increase of dough viscosity when adding fibres, as measured by creep-recovery tests on controlled stress rheometer. These results allowed to suggest the necessary modifications to the process byincreasing water addition and decreasing proofing time when incorporating fibres
    corecore