22 research outputs found
Pregnancy in MNGIE: a clinical and metabolic honeymoon.
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an inherited disease caused by a deficiency in thymidine phosphorylase and characterized by elevated systemic deoxyribonucleotides and gastrointestinal (GI) and neurological manifestations. We report the clinical and biochemical manifestations that were evaluated in a single patient before, during, and after pregnancy, over a period of 7Â years. GI symptoms significantly improved, and plasma deoxyribonucleotide concentrations decreased during pregnancy. Within days after delivery, the patient's digestive symptoms recurred, coinciding with a rapid increase in plasma deoxyribonucleotide concentrations. We hypothesize that the clinico-metabolic improvements could be attributed to the enzyme replacement action of the placental thymidine phosphorylase
Catheter-based delivery of cells to the heart
Clinical trials have begun to assess the feasibility, safety, and efficacy of administering progenitor cells to the heart in order to repair or perhaps reverse the effects of myocardial ischemia and injury. In contrast to surgical-based injections, which are often coupled with coronary bypass surgery, catheter-based injections are less invasive and make it possible to evaluate cell products used as sole interventions. The two methods that have been tested in humans are injecting cells directly into the ventricular wall with catheter systems dedicated to that purpose and infusing cells into coronary arteries with standard balloon angioplasty catheters. The catheters described in this article have been shown in both animal and clinical studies to be effective in cell delivery and to be safe. They are well-designed and user-friendly devices, but require further investigation to identify means for optimizing cell retention and to address other limitations. Randomized, placebo-controlled trials utilizing catheters for cell implantation are under way, and others are soon to follow. The results of these studies will help to shape the direction of future investigations, both clinical and basic. The spectrum of cardiac diseases, the variety of catheters for cell delivery, and the wide array of progenitor cell types open up this young field to creative discoveries