4 research outputs found

    Distributed Bragg grating frequency control in metallic nano lasers

    Get PDF
    We show that Bragg gratings can be readily incorporated into metallic nano-lasers which exploit waveguides with semiconductor cores, via modulation of the waveguide width. This provides a simple way to implement laser wavelength control

    Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection

    No full text
    Plasmonic nanolasers and spasers continue to attract a great deal of interest from the physics and nanophotonics community, with the experimental observation of lasing as a focus of research. We report the observation of continuous wave lasing in metallic cavities of deep subwavelength sizes under electrical injection, operating at room temperature. The volume of the nanolaser is as small as 0.42¿3, where ¿ = 1.55 µm is the lasing wavelength. This demonstration will help answer the question of how small a nanolaser can be made, and will likely stimulate a wide range of fundamental studies in basic laser physics and quantum optics on truly subwavelength scales. In addition, such nanolasers may lead to many potential applications, such as on-chip integrated photonic systems for communication, computing, and detection

    Electrical injection, continuous wave operation of subwavelength-metallic-cavity lasers at 260K

    Get PDF
    We report continuous wave lasing operation at T = 260 K of subwavelength-metallic-cavities with semiconductor core encapsulated in silver under electric injection. The physical cavity volumes of the two lasers presented are 0.96¿3 (¿ = 1563.4 nm) and 0.78¿3 (¿ = 1488.7 nm), respectively. Longitudinal modes observed in one of lasers correspond to the Fabry–Perot cavity in the length direction. Such record high temperature operation of a subwavelength laser is of great importance for the development of small light sources in future integrated photonic circuits and other on-chip applications

    Plasmonic distributed feedback lasers at telecommunications wavelengths

    Get PDF
    We investigate electrically pumped, distributed feedback (DFB) lasers, based on gap-plasmon mode metallic waveguides. The waveguides have nano-scale widths below the diffraction limit and incorporate vertical groove Bragg gratings. These metallic Bragg gratings provide a broad bandwidth stop band (~500nm) with grating coupling coefficients of over 5000/cm. A strong suppression of spontaneous emission occurs in these Bragg grating cavities, over the stop band frequencies. This strong suppression manifests itself in our experimental results as a near absence of spontaneous emission and significantly reduced lasing thresholds when compared to similar length Fabry-Pérot waveguide cavities. Furthermore, the reduced threshold pumping requirements permits us to show strong line narrowing and super linear light current curves for these plasmon mode devices even at room temperature
    corecore