12 research outputs found

    Optical off-nuclear spectra of quasar hosts and radio galaxies

    Get PDF
    We present optical (~3200A to ~9000A) off-nuclear spectra of 26 powerful active galaxies in the redshift range 0.1 < z < 0.3, obtained with the Mayall and William Herschel 4-meter class telescopes. The sample consists of radio-quiet quasars, radio-loud quasars (all with -23 > M_V > -26) and radio galaxies of Fanaroff & Riley Type II (with extended radio luminosities and spectral indices comparable to those of the radio-loud quasars). The spectra were all taken approximately 5 arcseconds off-nucleus, with offsets carefully selected so as to maximise the amount of galaxy light falling into the slit, whilst simultaneously minimising the amount of scattered nuclear light. The majority of the resulting spectra appear to be dominated by the integrated stellar continuum of the underlying galaxies rather than by light from the non-stellar processes occurring in the active nuclei, and in many cases a 4000A break feature can be identified. The individual spectra are described in detail, and the importance of the various spectral components is discussed. Stellar population synthesis modelling of the spectra will follow in a subsequent paper (Nolan et al. 2000).Comment: 23 pages, LaTeX, uses MNRAS style file, incorporates 71 postscript figures, to be published in MNRAS. Contact author: [email protected]

    High-resolution radio observations of Seyfert galaxies in the extended 12-micron sample - II. The properties of compact radio components

    Full text link
    We discuss the properties of compact nuclear radio components in Seyfert galaxies from the extended 12-micron AGN sample of Rush et al.(1993). Our main results can be summarised as follows. Type 1 and type 2 Seyferts produce compact radio components which are indistinguishable in strength and aspect, indicating that their central engines are alike as proposed by the unification model. Infrared IRAS fluxes are more closely correlated with low-resolution radio fluxes than high-resolution radio fluxes, suggesting that they are dominated by kiloparsec-scale, extra-nuclear emission regions; extra-nuclear emission may be stronger in type 2 Seyferts. Early-type Seyfert galaxies tend to have stronger nuclear radio emission than late-type Seyfert galaxies. V-shaped extended emission-line regions, indicative of `ionisation cones', are usually found in sources with large, collimated radio outflows. Hidden broad lines are most likely to be found in sources with powerful nuclear radio sources. Type 1 and type 2 Seyferts selected by their IRAS 12-micron flux densities have well matched properties

    Parsec-scale radio structures in the nuclei of four Seyfert galaxies

    Full text link
    We present 18-cm radio maps of four Seyfert nuclei, Mrk 1, Mrk 3, Mrk 231 and Mrk 463E, made with the European VLBI Network (EVN). Linear radio structures are present in three out of four sources on scales of ~100 pc to ~1 kpc, and the 20-mas beam of the EVN enables us to resolve details within the radio structures on scales of <10 pc. Mrk 3 was also imaged using MERLIN and the data combined with the EVN data to improve the sensitivity to extended emission. We find an unresolved flat-spectrum core in Mrk 3, which we identify with the hidden Seyfert 1 nucleus in this object, and we also see marked differences between the two highly-collimated radio jets emanating from the core. The western jet terminates in a bright hotspot and resembles an FRII radio structure, whilst the eastern jet has more in common with an FRI source. In Mrk 463E, we use the radio and optical structure of the source to argue that the true nucleus lies approximately 1 arcsec south of the position of the radio and optical brightness peaks, which probably represent a hotspot at the working surface of a radio jet. The EVN data also provide new evidence for a 100-pc radio jet powering the radio source in the Type 1 nucleus of Mrk 231. However, the Seyfert 2 galaxy Mrk 1 shows no evidence for radio jets down to the limits of resolution (~10 pc). We discuss the range of radio source size and morphology which can occur in the nuclei of Seyfert galaxies and the implications for Seyfert unification schemes and for radio surveys of large samples of objects.Comment: 23 pages, 7 postscript figures (supplied as separate files), uses AAS aaspp4 LaTeX style file, to appear in the 10 June 1999 issue of The Astrophysical Journa

    The ages of quasar host galaxies

    Get PDF
    We present the results of fitting deep off-nuclear optical spectroscopy of radio-quiet quasars, radio-loud quasars and radio galaxies at z ~ 0.2 with evolutionary synthesis models of galaxy evolution. Our aim was to determine the age of the dynamically dominant stellar populations in the hos t galaxies of these three classes of powerful AGN. Some of our spectra display residual nuclear contamination at the shortest wavelengths, but the detailed quality of the fits longward of the 4000A break provide unequivocal proof, if further proof were needed, that quasars lie in massive galaxies with (at least at z ~ 0.2) evolved stellar populations. By fitting a two-component model we have separated the very blue (starburst and/or AGN contamination) from the redder underlying spectral energy distribution, and find that the hosts of all three classes of AGN are dominated by old stars of age 8 - 14 Gyr. If the blue component is attributed to young stars, we find that, at most, 1% of the baryonic mass of these galaxies is involved in star-formation activity at the epoch of observation. These results strongly support the conclusion reached by McLure et al. (1999) that the host galaxies of luminous quasars are massive ellipticals which formed prior to the peak epoch of quasar activity at z ~ 2.5.Comment: 24 pages, LaTeX, uses MNRAS style file, incorporates 19 postscript figures, final version, to be published in MNRA

    The host galaxies of luminous quasars

    Full text link
    We present results of a deep HST/WFPC2 imaging study of 17 quasars at z~0.4, designed to determine the properties of their host galaxies. The sample consists of quasars with absolute magnitudes in the range -24>M_V>-28, allowing us to investigate host galaxy properties across a decade in quasar luminosity, but at a single redshift. We find that the hosts of all the RLQs, and all the RQQs with nuclear luminosities M_V<-24, are massive bulge-dominated galaxies, confirming and extending the trends deduced from our previous studies. From the best-fitting model host galaxies we have estimated spheroid and black-hole masses, and the efficiency (with respect to Eddington luminosity) with which each quasar is radiating. The largest inferred black-hole mass in our sample is \~3.10^9 M_sun, comparable to those at the centres of M87 and Cygnus A. We find no evidence for super-Eddington accretion in even the most luminous objects. We investigate the role of scatter in the black-hole:spheroid mass relation in determining the ratio of quasar to host-galaxy luminosity, by generating simulated populations of quasars lying in hosts with a Schechter mass function. Within the subsample of the highest luminosity quasars, the observed variation in nuclear-host luminosity ratio is consistent with being the result of the scatter in the black-hole:spheroid relation. Quasars with high nuclear-host ratios can be explained by sub-Eddington accretion onto black holes in the high-mass tail of the black-hole:spheroid relation. Our results imply that, owing to the Schechter cutoff, host mass should not continue to increase linearly with quasar luminosity, at the very highest luminosities. Any quasars more luminous than M_V=-27 should be found in massive elliptical hosts which at the present day would have M_V ~ -24.5.Comment: Accepted for publication in MNRAS. 18 pages; 7 figures and 17 greyscale images are reproduced here at low quality due to space limitations. High-resolution figures are available from ftp://ftp.roe.ac.uk/pub/djef/preprints/floyd2004
    corecore