36 research outputs found

    Galvanic Corrosion Between Ti/Ti6Al4V and Various Dental Alloys

    Get PDF
    The corrosion tendencies of metals are related with their position in the electromotive series. These electrode potential degrees may change due to the composition of the alloys, the surrounding medium or due to the alterations in the composition because of the recurrent costing. The galvanic corrosion appears when different electrochemical potentials are bound to one another and the electrical conductibility is assured by the presence of an electrolyte. It is difficult to avoid coupling of different metals, a problem concerning the choice of the alloy used for the implant bone supra-structure. One has studied the galvanism of several couples formed between a dental implant and diverse dental alloys in Afnor saliva. The electrochemical behavior of 8 commercial dental alloy superstructures with titanium and titanium alloy (Ti6Al4V) implants was investigated by electrochemical techniques. Non-precious alloys were Ni-Cr based (Wiron NT and Verasoft), Co-Cr based (Vitallium alloy) and Cu based (Gaudent). Semi-precious alloys were Ag-Pd based (RX91 and Unique White). The precious alloys were Au-Pd based (Ceram) and Au-Ag based (Argenco). Some of the corroded and non-corroded surfaces were observed by optical microscopy. From linear polarization curves the corrosion potential and the current densities were evaluated. The results showed very low corrosion rates, ranking from 10-6 to 10-9 A/cm2. All the results obtained indicate the fact that the corrosion process intensity corresponding to the coupling between titanium (respectively Ti6Al4V) and semi-precious alloys is reduced. The surface of precious and semi-precious alloys is not attacked, but the titanium (Ti6Al4V) surface is oxidized in time

    Electrochemical characterization of ZrTi alloys for biomedical applications. Part 2. The effect of thermal oxidation

    Get PDF
    Oxidation in air of ZrTi alloys at 500 ÂșC for 2 h produces oxide-covered materials with a very high corrosion resistance in Ringer’s solution at 37 ÂșC. The oxide layers present a double-layer structure, comprised by a thin and very compact inner layer of ca. 5 nm thickness, and a less compact, more porous and thicker outer layer. The thickness of the outer layer greatly varies with the composition of the base ZrTi alloy, but has very little influence in the overall electrochemical behaviour of the material. The nature of the oxide layer is a mixture of ZrO2 and TiO2, and no evidence of higher oxidation states of the metal could be found using XRD data. Anodic dissolution through the passive layers formed on the oxidized alloys is greatly diminished compared to those measured from the untreated materials, allowing all the alloying ratios between Zr and Ti to be potentially considered for implant application. The combination of alloying with titanium and oxidation in air at 500 ÂșC resulted in the materials that do not exhibit the characteristic susceptibility of zirconium towards the initiation of localized corrosion processes in aqueous chloride-containing electrolytes even for anodic polarizations up to +1.00 VSCE, a value well above the highest polarization experienced in the human body. Though all the oxidized alloys exhibited remarkable corrosion resistances, the best behaviour was found for oxidized Zr45Ti

    Electrochemical studies on the stability and corrosion resistance of two austenitic stainless steels for soft drinks containers

    Get PDF
    Austenitic stainless steel alloys are used in different food industry applications, including the preparation and storage of acidified carbonated soft drinks. Yet, austenitic stainless steels are not inert materials in contact with these drinks, and eventual modifications of these alloys must be investigated. Three carbonated soft drinks were investigated as for their effect on the stability of FeCrNi and FeCrNiMo alloys using two electrochemical techniques, namely linear potentiodynamic polarization (LPP) and electrochemical impedance spectroscopy (EIS), at 25 ÂșC. The high corrosion resistance of the austenitic stainless steel alloys in the soft drinks was provided by the formation of a rather stable passive film formed by metal oxides. Also, the electrochemical behaviour was related to an inhibitory action by caffeine as evidenced using potentiodynamic polarization and electrochemical impedance spectroscopy methods, with good correlations between the

    Multiscale electrochemical investigation of the corrosion resistance of various alloys used in dental prostheses

    Get PDF
    The electrochemical behaviour of Ag-Pd (Paliag), Ni-Cr (Heraenium NA), and Co-Cr (Heraenium CE) alloys used in dental prosthetics construction of crowns and bridges was studied in 0.9% NaCl solution at 25 ÂșC. The localized electrochemical characteristics related to corrosion resistance and eventual breakdown of the protecting oxide layers were investigated by scanning electrochemical microscopy (SECM), whereas potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques were employed to establish oxide stability. When the corrosion resistance of the alloys was evaluated by means of the corrosion current value determined around their corresponding open circuit potential in 0.9% NaCl solution, good protection can be expected resulting from their spontaneous passivation (low current densities in the order of tenths of ÎŒA cm-2). The polarization resistance of all the samples increased with immersion time, in the sequence Ag-Pd < Heraenium NA < Heraenium CE. Yet, increased electrochemical activity was detected with SECM when the alloys were polarized at +0.40 VSCE, a value that may be eventually experienced in the human body. Though a passivation mechanism was still operating in the chromium-containing alloys, oxide dissolution and precipitation of corrosion products occurred on Ag-Pd instea

    Assessing neuraxial microstructural changes in a transgenic mouse model of early stage Amyotrophic Lateral Sclerosis by ultra‐high field MRI and diffusion tensor metrics

    Get PDF
    bjective: Cell structural changes are one of the main features observed during the development of amyotrophic lateral sclerosis (ALS). In this work, we propose the useof diffusion tensor imaging (DTI) metrics to assess specific ultrastructural changes in the central nervous system during the early neurodegenerative stages of ALS.Methods: Ultra-high field MRI and DTI data at 17.6T were obtained from fixed, excised mouse brains, and spinal cords from ALS (G93A-SOD1) mice.Results: Changes in fractional anisotropy (FA) and linear, planar, and spherical anisotropy ratios (CL, CP, and CS, respectively) of the diffusion eigenvalues were measured in white matter (WM) and gray matter (GM) areas associated with early axonal degenerative processes (in both the brain and the spinal cord). Specifically, in WM structures (corpus callosum, corticospinal tract, and spinal cord funiculi) as the disease progressed, FA, CL, and CP values decreased, whereas CS values increased.In GM structures (prefrontal cortex, hippocampus, and central spinal cord) FA and CP decreased, whereas the CL a nd C values were unchanged or slightly smaller.Histological studies of a fluorescent mice model (YFP, G93A-SOD1 mouse) corroborated the early alterations in neuronal morphology and axonal connectivity measured by DTI.Conclusions: Changes in diffusion tensor shape were observed in this animal model at the early, nonsymptomatic stages of ALS. Further studies of CL, CP, and CSas imaging biomarkers should be undertaken to refine this neuroimaging tool for future clinical use in the detection of the early stages of ALSFil: Gatto, Rodolfo G.. University Of Illinois. Deparment Of Biological Science; Estados UnidosFil: Weissmann, Carina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de FisiologĂ­a, BiologĂ­a Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de FisiologĂ­a, BiologĂ­a Molecular y Neurociencias; ArgentinaFil: Amin, Manish. University of Florida; Estados UnidosFil: Finkielsztein, Ariel. Northwestern University; Estados UnidosFil: Sumagin, Ronen. Northwestern University; Estados UnidosFil: Mareci, Thomas H.. University of Florida; Estados UnidosFil: Uchitel, Osvaldo Daniel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de FisiologĂ­a, BiologĂ­a Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de FisiologĂ­a, BiologĂ­a Molecular y Neurociencias; ArgentinaFil: Magin, Richard L.. University Of Illinois. Deparment Of Biological Science; Estados Unido

    Evaluation of the corrosion resistance of plasma nitrided austenitic stainless steel

    Get PDF
    Plasma nitriding at 500 °C for 14 h was applied to austenitic 304 stainless steel for surface hardening. The effect of surface treatment on the corrosion resistance of the material was investigated in naturally-aerated 0.5 M NaCl solution for 30 days using linear potentiodynamic polarization and electrochemical impedance spectroscopy methods. Both as-cast and plasma nitrided stainless steel samples underwent spontaneous passivation, though the nitrided sample exhibited more positive zero current potential, higher breakdown potential, and lower anodic current densities than the as-cast material. Impedance spectra were interpreted in terms of a duplex passive film, corrosion resistance mainly arising from a thin inner compact layer, whereas the outer layer was more porous and less sealing. Capacitive behaviour and high corrosion resistance were observed in the low and medium frequency ranges for the nitrided sample

    Investigation of the electrochemical behaviour of TiMo alloys in simulated physiological solutions

    Get PDF
    This paper addresses on the electrochemical behaviour of three TiMo alloys exposed to simulated physiological environments. Their stability and corrosion resistance was characterized in order to explore the potential application for the manufacturing of implant materials. Ringer’s solution together with an acidic modification of the Ringer’s solution (pH = 3.1) at room temperature were considered. Both electrochemical methods (namely, potentiodynamic polarization curves and electrochemical impedance spectroscopy, EIS), and spatially-resolved scanning electrochemical microscopy (SECM), were used. Additionally, surface characterization was made employing optical microscopy and scanning electron microscopy (SEM). The oxide films formed on the TiMo alloys in neutral and acidic Ringer’s solutions effectively protect the metal from dissolution in this environment, and no breakdown of the passive layer occurs in the potential range up to +1.00 V vs. SCE. SEM micrographs of retrieved samples do not show corrosion pits, cracks, or any other defects despite the rather high positive potential values reached during the potential excursion. EIS data reveal that two-layer oxide films are formed, consisting of a porous outer layer and a compact inner layer (approximately 5-6 nm thick), the latter accounting almost completely for the corrosion resistance of the materials. The corrosion resistance of the inner compact film towards metal dissolution is smaller in the acidic environment, whereas it increases with higher Mo contents in the alloy. The passive oxide films exhibit dielectric characteristics towards charge transfer, and they are imaged as insulators by scanning electrochemical microscop

    Electrochemical characterization of ZrTi alloys for biomedical applications

    Get PDF
    The electrochemical behaviour of three ZrTi alloys (Zr5Ti, Zr25Ti and Zr45Ti) in Ringer’s solution has been investigated. Their resistance against localized corrosion has been determined from cyclic potentiodynamic polarization (CCP) and electrochemical impedance spectroscopy (EIS) measurements, whereas scanning electrochemical microscopy (SECM) was applied to investigate the local reactivity of the passive films developed on the materials, and scanning electron microscopy (SEM) was employed to characterize the surface morphology of the alloys subjected to anodic polarization. An increased reactivity could be detected with SECM when the metal samples were polarized at +0.50 VSHE, though the extent of this feature greatly depended on the nature of the metallic material. At 37 0C, the Zr5Ti alloy was susceptible to localized corrosion. Though Zr25Ti alloy presented rather low pitting potential, the spontaneous corrosion potential of the material was sufficiently negative to require overpotentials around 600 mV for breakdown to occur. Finally, the Zr45Ti alloy exhibited a larger passive range in the polarization curve, and it was resistant to localized corrosio

    Characterization of the localized surface chemical activity of Ti-Mo and Ti-Ta alloys for biomedical applications using scanning electrochemical microscopy

    Get PDF
    Scanning electrochemical microscopy (SECM) was employed for in situ characterization of surface chemical activity of various Ti-Mo and Ti-Ta alloys for biomedical application. In this work the local differences in surface reactivity for different Ti-Mo and Ti-Ta alloys were analyzed when they were polarized in 0.1 M NaCl solution and in Ringer’s physiological solution using SECM, and results compared to those for the unbiased samples. The analysis of the shape of the approach curves obtained for the Ti-Mo and Ti-Ta alloys shows a different behaviour to be distinguished depending on the nature of the alloying element. There are also differences among the various Ti-Ta alloys tested, that cause changes in the shape of the approach curves with the value of the polarization applied to the substrate, defining a transition potential between -0.30 and -0.40 V vs. Ag/AgCl/KCl(3M) for most of the systems under study. Furthermore, from the line scans and array scans, a change in reactivity of the surface has been observed corresponding to the activation of the localized sites which occurs selectively with the applied potential. SECM is shown to be a powerful technique for the investigation of the surface characteristics of biomaterials in simulated physiological environments

    Electrochemical behaviour of ZrTi alloys in artificial physiological solution simulating in vitro inflammatory conditions

    Get PDF
    ZrTi alloys in artificial physiological solution simulating in vitro inflammatory conditions were investigated for biomedical application. Effect of surface treatment on the corrosion resistance of Zr5Ti, Zr25Ti, and Zr45Ti in acidified Ringer’s solution (pH = 3) at 25 ÂșC was evaluated using electrochemical impedance spectroscopy, potentiodynamic polarization curves, and scanning electrochemical microscopy. Thermal oxidation in air at 500 ÂșC produces materials with high in vitro corrosion resistance to acidic environments. Higher impedance values related to passivity were observed for oxidized ZrTi alloys compared to as-cast materials. SECM reveals thermal oxidation produced more compact and electrically insulating oxide filmsZirconium-titanium alloysBiomaterialsSurface treatmentSimulated physiological solutionElectrochemical techniquesCorrosion resistanc
    corecore