7 research outputs found
Recommended from our members
Revisiting Epidermal Growth Factor Receptor (EGFR) Amplification as a Target for Anti-EGFR Therapy: Analysis of Cell-Free Circulating Tumor DNA in Patients With Advanced Malignancies.
PurposeTo date, evidence for tissue epidermal growth factor receptor (EGFR) overexpression as a biomarker for anti-EGFR therapies has been weak. We investigated the genomic landscape of EGFR amplification in blood-derived cell-free tumor DNA (cfDNA) across diverse cancers and the role of anti-EGFR therapies in achieving response.MethodsWe assessed EGFR amplification status among 28,584 patients with malignancies evaluated by clinical-grade next-generation sequencing (NGS) of blood-derived cfDNA (54- to 73-gene panel). Furthermore, we curated the clinical characteristics of 1,434 patients at the University of California San Diego who had cfDNA testing by this NGS test.ResultsOverall, EGFR amplification was detected in cfDNA from 8.5% of patients (2,423 of 28,584), most commonly in colorectal (16.3% [458 of 2,807]), non-small-cell lung (9.0% [1,096 of 12,197]), and genitourinary cancers (8.1% [170 of 2,104]). Most patients had genomic coalterations (96.9% [95 of 98]), frequently involving genes affecting other tyrosine kinases (72.4% [71 of 98]), mitogen-activated protein kinase cascades (56.1% [55 of 98]), cell-cycle-associated signals (52.0% [51 of 98]), and the phosphoinositide 3-kinase pathway (35.7% [35 of 98]). EGFR amplification emerged in serial cfDNA after various anticancer therapies (n = 6), including checkpoint inhibitors (n = 4), suggesting a possible role for these amplifications in acquired resistance. Nine evaluable patients with EGFR amplification were treated with anti-EGFR-based regimens; five (55.6%) achieved partial responses, including three patients whose tissue NGS lacked EGFR amplification.ConclusionEGFR amplification was detected in cfDNA among 8.5% of 28,584 diverse cancers. Most patients had coexisting alterations. Responses were observed in five of nine patients who received EGFR inhibitors. Incorporating EGFR inhibitors into the treatment regimens of patients harboring EGFR amplification in cfDNA merits additional study
A review on cell-free RNA profiling: Insights into metabolic diseases and predictive value for bariatric surgery outcomes
Background: The advent of liquid biopsies presents a novel, minimally invasive methodology for the detection of disease biomarkers, offering a significant advantage over traditional biopsy techniques. Particularly, the analysis of cell-free RNA (cfRNA) has garnered interest due to its dynamic expression profiles and the capability to study various RNA species, including messenger RNA (mRNA) and long non-coding RNA (lncRNA). These attributes position cfRNA as a versatile biomarker with broad potential applications in clinical research and diagnostics. Scope of Review: This review delves into the utility of cfRNA biomarkers as prognostic tools for obesity-related comorbidities, such as diabetes, dyslipidemia, and non-alcoholic fatty liver disease. Major conclusions: We evaluate the efficacy of cfRNA in forecasting metabolic outcomes associated with obesity and in identifying patients likely to experience favorable clinical outcomes following bariatric surgery. Additionally, this review synthesizes evidence from studies examining circulating cfRNA across different physiological and pathological states, with a focus on its role in diabetes, including disease progression monitoring and treatment efficacy assessment. Through this exploration, we underscore the emerging relevance of cfRNA signatures in the context of obesity and its comorbidities, setting the stage for future investigative efforts in this rapidly advancing domain
A survey of k-mer methods and applications in bioinformatics
The rapid progression of genomics and proteomics has been driven by the advent of advanced sequencing technologies, large, diverse, and readily available omics datasets, and the evolution of computational data processing capabilities. The vast amount of data generated by these advancements necessitates efficient algorithms to extract meaningful information. K-mers serve as a valuable tool when working with large sequencing datasets, offering several advantages in computational speed and memory efficiency and carrying the potential for intrinsic biological functionality. This review provides an overview of the methods, applications, and significance of k-mers in genomic and proteomic data analyses, as well as the utility of absent sequences, including nullomers and nullpeptides, in disease detection, vaccine development, therapeutics, and forensic science. Therefore, the review highlights the pivotal role of k-mers in addressing current genomic and proteomic problems and underscores their potential for future breakthroughs in research
Prognostic implications of RAS alterations in diverse malignancies and impact of targeted therapies.
RAS alterations are often found in difficult-to-treat malignancies and are considered "undruggable." To better understand the clinical correlates and coaltered genes of RAS alterations, we used targeted next-generation sequencing (NGS) to analyze 1,937 patients with diverse cancers. Overall, 20.9% of cancers (405/1,937) harbored RAS alterations. Most RAS-altered cases had genomic coalterations (95.3%, median: 3, range: 0-51), often involving genes implicated in oncogenic signals: PI3K pathway (31.4% of 405 cases), cell cycle (31.1%), tyrosine kinase families (21.5%) and MAPK signaling (18.3%). Patients with RAS-altered versus wild-type RAS malignancies had significantly worse overall survival (OS; p = 0.02 [multivariate]), with KRAS alterations, in particular, showing shorter survival. Moreover, coalterations in both RAS and PI3K signaling or cell-cycle-associated genes correlated with worse OS (p = 0.004 and p < 0.0001, respectively [multivariate]). Among RAS-altered patients, MEK inhibitors alone did not impact progression-free survival (PFS), while matched targeted therapy against non-MAPK pathway coalterations alone showed a trend toward longer PFS (vs. patients who received unmatched therapy) (HR: 0.79, 95% CI: 0.61-1.03, p = 0.07). Three of nine patients (33%) given tailored combination therapies targeting both MAPK and non-MAPK pathways achieved objective responses. In conclusion, RAS alterations correlated with poor survival across cancers. The majority of RAS alterations were accompanied by coalterations impacting other oncogenic pathways. MEK inhibitors alone were ineffective against RAS-altered cancers while matched targeted therapy against coalterations alone correlated with a trend toward improved PFS. A subset of the small number of patients given MEK inhibitors plus tailored non-MAPK-targeting agents showed responses, suggesting that customized combinations warrant further investigation